
A TESTING STRATEGY
FOR HTML5 PARSERS

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2015

By
José Armando Zamudio Barrera

School of Computer Science

Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

Dedication 13

Glossary 14

1 Introduction 15
1.1 Aim . 16

1.2 Objectives . 16

1.3 Scope . 17

1.4 Team organization . 17

1.5 Dissertation outline . 17

1.6 Terminology . 18

2 Background and theory 19
2.1 Introduction to HTML5 . 19

2.1.1 HTML Historical background 19

2.1.2 HTML versus the draconian error handling 20

2.2 HTML5 Parsing Algorithm . 21

2.3 Testing methods . 23

2.3.1 Functional testing . 23

2.3.2 Oracle testing . 25

2.4 Summary . 26

2

3 HTML5 parser implementation 27
3.1 Design . 27

3.1.1 Overview . 27

3.1.2 State design pattern . 29

3.1.3 Tokenizer . 31

3.1.4 Tree constructor . 32

3.1.5 Error handling . 34

3.2 Building . 34

3.3 Testing . 35

3.3.1 Tokenizer . 35

3.3.2 Tree builder . 36

3.4 Summary . 37

4 Test Framework 38
4.1 Design . 38

4.1.1 Architecture . 38

4.1.2 Adapters . 39

4.1.3 Comparator and plurality agreement 41

4.2 Building . 42

4.2.1 Parser adapters implementations 43

4.2.2 Preparing the input . 43

4.2.3 Comparator . 44

4.3 Other framework features . 45

4.3.1 Web Interface . 45

4.3.2 Tracer . 46

4.4 Summary . 46

5 HTML5 parsers survey 48
5.1 Summary . 51

6 Common crawl data set as source of test cases 52
6.1 Common crawl introduction . 53

6.2 Common crawl corpus description 54

6.3 Common crawl Index . 55

6.4 Random sample algorithm . 57

6.4.1 Random Shard Index File 58

3

6.4.2 Random Shard . 58

6.4.3 Random CDX Index records 59

6.5 Sampling method . 60

6.6 Summary . 63

7 Test framework execution 64
7.1 Common crawl sample from May 2015 65

7.1.1 Experiment 1 . 65

7.1.2 Experiment 2 . 66

7.1.3 Experiment 3 . 68

7.1.4 Experiment 4 . 70

7.2 HTML5Lib test suite . 71

7.2.1 Experiment 5 . 71

7.3 Common crawl sample from July 2015 74

7.3.1 Experiment 6 . 74

7.4 Summary . 76

8 Results and discussion 77
8.1 MScParser evaluation . 77

8.2 Differences between W3C and WHATWG specifications 78

8.3 Level of agreement across parsers 79

8.4 Disagreements analysis . 81

8.5 HTML5Lib Missing tests . 82

8.6 Specification bugs . 83

8.7 Summary . 83

9 Conclusions 84
9.1 Limitations . 85

9.2 Future work . 86

Bibliography 88

A Team activities 92

B HTML5 Parser Architecture 96

C HTML5 Parser Survey 98

4

D Files used from the HTML5Lib test suite 101

E Possible HTML5Lib test suite missing tests 102
E.1 U+FEFF BYTE ORDER MARK character 102
E.2 Line feed next to textarea . 103
E.3 Line feed next to pre . 104

F ValidatorNU bugs 105
F.1 Character reference bug . 105
F.2 Menuitem bug . 106
F.3 Extra character after malformed comment bug 107

G Parse 5 bugs 108
G.1 Button tag bug . 108
G.2 Table and Carriage Return(CR) characters references 109

Word Count: [18106]

5

List of Tables

4.1 Majority VS Plurality. Possible scenarios when comparing output trees 42

5.1 HTML5 parser survey . 49

8.1 Probability of convergence with reference to Common crawl data set
of may 2015. Ordered from highest to lowest. 80

8.2 Probability of convergence with reference to HTML5Lib test suite. Or-
dered from highest to lowest. 80

A.1 Distribution of effort . 93
A.2 Log with tasks done by myself. Period from June to September. . . . 95

C.1 HTML5 sources and references . 99
C.2 HTML5 parser survey . 100

6

List of Figures

2.1 HTML5 parser flow diagram. Taken from W3C Recommendation. . . 22
2.2 Automated Oracle test process. A test case is processed by an Auto-

mated Oracle that produces an expected result. The result is compared
with the AUT result in order to find any possible failure. 25

3.1 Parser Context. Lives within the parser life cycle and contains ele-
ments shared between the parser objects. 29

3.2 Java classes representing different algorithms 30
3.3 State design pattern class diagram 30
3.4 Class diagram of tokenizer and related classes 32
3.5 Class diagram of TreeConstructor and related classes 33
3.6 A misnested tag example . 34
3.7 Parsing example showing a parse error. The closing tag h1 is missing,

instead an EOF was encountered. 34

4.1 Test framework architecture. Designed along with Anaya[1] 40
4.2 Single test. A folder contains the output trees from different parsers. . 44
4.3 Multiple test. A folder contains sub folders that represent the tests. . . 44
4.4 Disagreement file example. This file store the differences against the

most likely correct tree. 45
4.5 Web application UI screen shot. This image shows two output trees

and a difference in red color. 46

6.1 Common crawl index structure. The index is constituted by several
second index files that contains the location of the compressed shards 56

6.2 Format and example of a Shard index record. Extracted from the Com-
mon crawl index. 56

6.3 Format and example of a Common crawl CDX index record. Extracted
from the Common crawl index. 57

7

6.4 Sampling method. The sample of indexes is created first. Then the
WARC file is built. 61

6.5 Cut of a sample CDX File. 62

7.1 Number of passed and failed tests per parser in experiment 1 65
7.2 Convergence level in experiment 1 66
7.3 Number of passed and failed tests per parser in experiment 2 67
7.4 Convergence level in experiment 2 67
7.5 Number of passed and failed tests per parser in experiment 3 69
7.6 Convergence level in experiment 3 69
7.7 Number of passed and failed tests per parser in experiment 4 70
7.8 Convergence level in experiment 4 71
7.9 Number of passed and failed tests per parser in experiment 5 72
7.10 Convergence level in experiment 5 73
7.11 Number of passed and failed tests per parser in experiment 4 74
7.12 Number of passed and failed tests per parser in experiment 6 75
7.13 Convergence level in experiment 6 75

8.1 Tokenizer test results. The failed test is because of specification differ-
ence. 77

8.2 Tree constructor test results. The failed tests are because of specifica-
tion differences. 78

B.1 Parser architecture part 1 . 96
B.2 Parser architecture part 2 . 97

F.1 Character reference bug . 106

8

Abstract

As an effort to maximise the interoperability among HTML parsers, both W3C and
WHATWG provide a detailed parsing algorithm in their last HTML specification. The
implementation and therefore testing of this algorithm may represent a complex task.
Up to now, far too little attention has been paid to ensure the compliance of a parsers
in relation to the specification. Furthermore, a considerably number of parsers rely on
the HTML5lib test suite. This might not be enough to ensure the compliance and thus
the interoperability. This dissertation presents an approach to test the level of compli-
ance among several HTML5 parsers. In addition, it validates whether the HTML5lib
test suite is enough to guarantee a consistent behaviour among HTML5 parsers imple-
mentations. Moreover, the developed testing framework may help to find compliance
violations that might not be covered by the HTML5lib test suite. In order to achieve the
above, a new parser implementation following the W3C specification was developed
in Java and tested against the HTML5Lib test suite for the purpose of understanding
the specification and validate its complexity. Secondly, a test framework based on N-
version diversity was developed to compare the outputs of a selected group of parsers
and determine the most likely correct output by plurality voting. Finally the level of
compliance of a parser is determined by its percentage of convergence in relation to
the other parsers. Data for this study was collected from the Common Crawl corpus.
From a set of selected HTML5 parsers, this study found that in general there is a high
probability of convergence, and that this probability is higher if the parsers in context
passed the HTML5Lib test suite. The main reason of disagreements was because of
specification differences. Moreover, the test framework proved to be useful for finding
bugs in the parsers. In conclusion, the test framework developed in this study showed
a close approximation of the level of compliance of HTML5 parsers and proved that
HTML5Lib test suite does ensure a consistent behaviour among HTML5 parsers, en-
suring the compliance with reference to WHATWG specification.

9

Declaration

No portion of the work referred to in this dissertation has
been submitted in support of an application for another de-
gree or qualification of this or any other university or other
institute of learning.

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

11

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Acknowledgements

To my project supervisor, Dr. Bijan Parsia, I owe my gratitude for his constant advice,
guidance and support throughout the course of this project.

I would also like to express my gratitude to the Mexican National Council for Sci-
ence and Technology (CONACyT) for awarding me a scholarship and financial bene-
fits that have enabled me commence and complete my MSc studies at The University
of Manchester.

12

Dedication

To my parents, for believing in me and pushing me forward to achieve my goals.

To my tutor Kristian, for your guidance and care.

To my friend, Casey, for your friendship, support and laughter.

To my university colleagues.

To Ana, for your patience, understanding and love.

13

Glossary

AUT Application Under Test. 7, 25

AWS Amazon Web Services. 54, 55

DOM Document Object Model. 15, 20

DTD Document Type Definition. 21

HTML Hypertext Markup Language. 15, 19

JAXP Java API for XML Processing. 42, 45

JSON JavaScript Object Notation. 35

S3 Simple Storage Service. 53

W3C World Wide Web Consortium. 15, 19

WARC Web ARChive. 39, 54

WHATWG Web Hypertext Application Technology Working Group. 15, 20

XHTML eXtensible Hypertext Markup Language. 19

14

Chapter 1

Introduction

Over the years Web Technologies have continually evolved in order to enhance com-
munication over the Internet. Groups such as the World Wide Web Consortium (W3C)
and Web Hypertext Application Technology Working Group (WHATWG) develop
standards to support such communications. One of the most important standards is
the Hypertext Markup Language (HTML) specification. Ian Hickson (main editor of
the HTML specification) states that the main objective of the specification is ” to ensure
interoperability, so that authors get the same results on every product that supports the
technology” [2]. In order to achieve this goal, the HTML technology has had several
changes through history from its creation to its current version: HTML5.

The focus of this study is the parsing section. This section defines the rules to
parse an HTML5 document into a Document Object Model (DOM) tree. To ensure
interoperability, parser implementations must exactly follow these rules. However, the
pseudocode algorithm provided by the specification is a complex combination of state
machines. This makes it difficult for implementers to test and ensure the compliance
with traditional functional testing methods.

Currently neither W3C nor WHATWG provide a reliable tool or mechanism to
validate the conformance to the specification. Hence parser developers resort to test
their output with test suites, validators or even by comparing their outputs against
another parsers/browsers. A widely used test suite is called texthtml5lib-tests which
provides a large set of tests with an accessible and platform independent format [3].
Nevertheless this test suite might be not enough to guarantee the conformance against
the specification due to the dynamic behaviour of the web and infinity possibility of
input cases. Thus a complementary test method is needed.

Additionally to HTML5lib test suites, several attempts have been made to test the

15

16 CHAPTER 1. INTRODUCTION

HTML5 parsers. Minamide and Mori[4] achieved to generate automatic test cases,
however the specification coverage was limited due to complications with the transla-
tion of the algorithm to a grammar, and may not generalise to web content. One pos-
sible solution test this complex scenario is with Manolache and Kourie [5] approach
to generate approximate test oracles based on on N-version diversity. These studies
influenced the method proposed in this study and the design of a testing framework for
HTML5 parsers.

The following sections of this chapter show the aim and objectives of the project as
well as hypotheses and scope. Finally, the chapter ends with an outline of the structure
of this dissertation.

1.1 Aim

Develop a testing framework based on N-version diversity to validate the compliance
of HTML5 parsers.

1.2 Objectives

1. Develop a HTML5 compliant parser for the purpose of understanding the archi-
tecture and operation of the HTML5 parsing algorithm

2. Pass the HTML5Lib test suite with the developed parser.

3. Develop a test framework based on N-version diversity to validate the compli-
ance of HTML5 parsers.

4. Expose the level of convergence of HTML5 parsers in relation to a set of test
cases.

5. Identify and analyse the cause of disagreements.

6. Find compliance violations in the parsers in testing.

7. Find missing tests in HTML5lib test suite.

8. Find bugs in the specification.

1.3. SCOPE 17

1.3 Scope

The scope of the project is limited to the parsing section of the HTML5 specification,
and as part of the plan and estimation, it was decided to exclude the encoding and
scripting execution sections. Therefore the implementation and test framework was
designed to only work with UTF-8 encoding and without script support.

1.4 Team organization

The work presented in this thesis was done by a team, which consisted of three MSc.
students. The team worked together to develop the HTML5 compliant parser pre-
sented in Chapter 3. Similarly, parsers installation tasks and core components of the
test framework were divided between the team. Then the decision was took to work in-
dividually in order to achieve different goals. Anaya designed and developed a Tracer
from the HTML5 parser [1] whereas I was responsible for obtaining a sample from the
Common Crawl data set in order to obtain an approximation of level of convergence
and thus of compliance of selected parsers. The latter is shown in Chapter 6. The
Appendix A shows a more detailed table listing the activities and work done by each
member. Additionally, in the same Appendix a second table shows a log of activities
done by myself.

1.5 Dissertation outline

The dissertation is composed of nine chapters. Chapter 1 is this introduction. Chapter
2 begins with the HTML history and looks at how HTML evolved to become what it is
nowadays. Additionally it gives a brief introduction to the parsing algorithm and fin-
ishes describing related work to testing theory. Chapter 3 describes the design, building
and testing of a parser implementation. Similarly, Chapter 4 describes the design and
building of the test framework. Chapter 5 shows a detailed survey of existing HTML5
parsers and lists which were selected for evaluation. Chapter 6 introduces to Common
Crawl data set and describes the method used to obtain a sample for the test frame-
work. Chapter 7 shows the settings, results and discussion of the experiments realized
in the order they were conducted. Chapter 8 presents the overall results and key find-
ings of the study. The last Chapter 9 provides a concise summary of the research, the
key findings, implications and future work.

18 CHAPTER 1. INTRODUCTION

1.6 Terminology

The terms HTML parser specification and specification refers to the W3C section
8.2 of Parsing HTML documents of the W3C HTML5 recommendation [6], unless
indicated otherwise.

The term MScParser is used to refer to the parser developed in this project.

Chapter 2

Background and theory

2.1 Introduction to HTML5

This section gives an introduction to HTML5. The first subsection describes the evo-
lution of Hypertext Markup Language (HTML) and explains the reason why it was
created. The second subsection details the concept called draconian error handling,
the reason why HTML5 did not adopt it and its relation to the HTML5 parsing algo-
rithm.

2.1.1 HTML Historical background

The following is a brief description on the history of HTML and the introduction to
terms related to this dissertation. According to W3C, HTML is defined as “the Webs
core language for creating documents and applications for everyone to use, anywhere”
[7]. Nowadays HTML is widely used in the world wide web and it has become a key
resource in our daily lives.

HTML has been evolving since its creation by Berners-Lee [8] with the World
Wide Web. The first versions were managed by CERN and then by TIEF [9]. With the
creation of the World Wide Web Consortium (W3C) in October 1994 [8] the HTML
language evolved until HTML4 was published in 1997. Then the consortium decided
to work on the XML equivalent in 1998, called eXtensible Hypertext Markup Lan-
guage (XHTML) [9]. XHTML was the result of W3C decision to move the web to-
wards XML technologies, hoping it would “become a more flexible, machine-readable,
stricter, and more extensible way to mark up documents and other data”[10].

One of the characteristics of XHTML is its draconian error handling. This term

19

20 CHAPTER 2. BACKGROUND AND THEORY

refers to the requirement that all well-formedness errors be treated as fatal errors[11].
A well-formedness error is generally understood in this context to mean a violation
of a XML rule. The main aim for adopting this XML characteristic into HTML tech-
nology was to facilitate developers to write processing programs. This characteristic
forced people to be careful while writing HTML documents because any minimal er-
ror led to break down the entire web page. The next version W3C started working on
called XHTML2, in addition to the draconian error handling, it did not have backwards
compatibility at all [9].

Web Hypertext Application Technology Working Group (WHATWG) was born
and HTML5 with it as a result of the bad reception of XHTML2. XHTML2 was not be-
ing used to its draconian error handling and lack of backwards compatibility[10]. Con-
sequently, an independent group emerged in 2004 called Web Hypertext Application
Technology Working Group (WHATWG) concerned about W3C direction. W3C con-
tinue working on XHTML2 whereas WHATWG decided to provide their own HTML
specification, updating it according to the demand of the applications, users and ven-
dors, while at the same time maintaining backwards compatibility and flexible error
handling. In 2007 W3C stopped working on XHTML2 and formed a working group
with WHATWG to develop the HTML5 standard[9] although they still provide sepa-
rate specifications nowadays.

As mentioned above,The W3C and WHATWG are the two organisations that pro-
vide standards for HTML. The field of research of this dissertation is the validation
of the conformance to the HTML5 parsing, therefore, the section of most interest is
Parsing HTML documents1which defines rules to parse HTML5 documents. This sec-
tion provides a detailed algorithm to generate a Document Object Model (DOM) tree
from the parsing of a HTML5 document or an arbitrary string. The main difference
between the W3C and WHATWG versions is that WHATWG specification is a living

standard which means that does not have versions [12] and is in constant evolution.
As a result it can be updated at any time. One possible implication of this is that it
makes it difficult to be up to date to the specification.

2.1.2 HTML versus the draconian error handling

As described in the previous subsection, HTML was reborn as HTML5 to be less
draconian [11] and more tolerant to errors. The motivation for using a Draconian error

1W3C (Section 8.2): http://www.w3.org/TR/html5/syntax.html#parsing ,
WHATWG (Section 12.2): https://html.spec.whatwg.org/multipage/syntax.html#parsing

http://www.w3.org/TR/html5/syntax.html#parsing
https://html.spec.whatwg.org/multipage/syntax.html#parsing

2.2. HTML5 PARSING ALGORITHM 21

handling policy was to allow developers to write simple programs without worrying
about the error handling “for all sorts of sloppy end-user practices”[13]. As Bray notes:
“The circumstances that produce the Draconian behavior - fatal errors - are all failures
to attain the condition of well-formedness. Well-formedness doesn’t cost much; the
tags have to be balanced, the entities have to be declared, and attributes have to be
quoted”[13]. Thus, it was believed that developers were going to follow this measure
by writing HTML free of errors. However, history showed that this did not happen.
Opposite to XML technologies, HTML was designed to accept and handle several
syntax errors [14] and not well formed documents. The motivation can be resumed
with Ian Hickson observation: “Authors will write invalid content regardless” [2].

The error tolerance feature of HTML5 is probably one of the reasons why the
specification could not be easily described in Document Type Definition (DTD), XML
Schema, RelaxNG or other grammar-based schema languages. In other words, HTML5
could not be an XML technology since HTML documents do not meet with the well-
formedness constraints given in the XML specification [15]. Therefore, instead of
providing a schema, HTML5 is described in form of a pseudo code that explicitly
states error recovery rules [2].

What follows is an outline of the HTML5 Parsing Algorithm part of the HTML5
specification introduced in this section.

2.2 HTML5 Parsing Algorithm

The HTML5 Parsing Algorithm defines the rules to generate a DOM tree from a
text/html resource[6]. The term DOM is defined by W3C[16] as “a platform- and
language-neutral interface that will allow programs and scripts to dynamically access
and update the content, structure and style of documents”. This section moves on to
describe the architecture of the parsing algorithm in which a DOM tree is generated
from a HTML document. The second part list some differences between the parsing
sections of W3C and WHATWG found in the course of this project.

By and large the parser architecture is composed by a byte stream decoder, input
stream pre-processor, tokenizer and the tree constructor. Its work flow is shown in
the figure 2.1. Although there is a stage called Script execution, the rules to execute
a script are in another section of the specification. Moreover, a script engine must
be included in the implementation to actually run a script. As our scope currently is
limited to parsing without script execution these rules are not covered.

22 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.1: HTML5 parser flow diagram. Taken from W3C Recommendation.

The core components in the HTML5 parser are the tokenizer and tree constructor.
Basically the tokenizer is responsible for doing the lexical analysis. It receives a stream
of input characters and creates tokens. Subsequently the tokens are taken by the tree
constructor, which may insert a node into the resulting DOM tree. Another important
aspect of the parser is that the construction stage is re-entrant “meaning that while the
tree construction stage is handling one token, the tokenizer might be resumed, caus-
ing further tokens to be emitted and processed before the first token’s processing is
complete”[6]. Additionally the specification provides algorithms for encoding detec-
tion and a stream preprocessor that prepares the input stream i.e. filtering some invalid
Unicode characters.

Both tokenizer and tree constructor components are expressed as deterministic state
machines. A state machine, finite state machine or finite state automaton is a structure
consisting of a finite set of states (including a start state), a finite set of input symbols
called alphabet, a transition function that tells which state to move depending of the
input symbol and current state of the machine, and a set of final states. The tokenizer
consists of 68 states, the set of Unicode code points [17] is the alphabet and the tran-
sitions are defined in every state. On the other hand, the tree constructor consists of
23 states, called insertion modes, tokens are the alphabet and the transitions are also
described in every insertion mode.

2.3. TESTING METHODS 23

The HTML5 parser algorithm is based on the Top-Down parsing. A Top-Down
parsing reconstruct a parse tree from its root downwards [18]. In the HTML5 parser
algorithm, the tree constructor creates a tree by adding as root the element html no
matter if it comes or not in the input data. Then as it receives more tokens, these
are added to the three in a top-down direction. However, due to its error correction
capability, nodes could be added in an upper level in the tree. Thus it would be incorrect
to affirm that the parsing technique is purely top-down, rather it is top-down derivation.

The HTML5 parser features a robust error handling capability. When a syntax
error is encountered, the parser can modify its internal state to continue processing
the rest of the input. This is know as error recovery [18]. Furthermore, its capable to
correct the input to be syntactically correct, by adding, removing or changing Unicode
characters in the input stream or tokens that feed the tree constructor.

Another special feature of the parser is the capability to modify the parser tree by
adding, editing or removing tokens as a result of an execution of a script. The parser
algorithm allows the execution of scripts while parsing, therefore the construction of
the tree does not depend only of the tokens generated by the input document.

Finally, the HTML5 parser could not be easily described by a context-free grammar
and thus apply existing parsing techniques. The reasons are the next characteristics:

1. Error handling and correction. A parser tree is always constructed even if the
input contains errors.

2. Execution of scripts while parsing. The parser tree is constructed with tokens
from the input stream and from the result of scripts execution.

So far this chapter has focused on HTML5 specification and parsing algorithm. The
following section will discuss methods for testing HTML parsing and related literature
review.

2.3 Testing methods

2.3.1 Functional testing

This section describes and discusses the different methods that attempt to address the
aim of this dissertation. These methods are based on functional testing or black box
testing as they are intended to test any implementation of the parsing algorithm. Ac-
cording to Borba et al. “Functional testing involves two main steps: to identify the

24 CHAPTER 2. BACKGROUND AND THEORY

functionalities the product implementation should perform; and to create test cases that
are capable of verifying whether such functionalities are fulfilled correctly according
to the product specification.”[19].

The following are two services that test browsers compliance with HTML and web
technologies. The acid3 browser test consists in a test suite for evaluating HTML4,
XHTML 1.0, DOM, javascript and CSS technologies2. However HTML5 is not in-
cluded [20]. A web site called html5test [21] provides a score for the browsers, and
validates if supports HTML5 tokenizer and tree construction, though methodology in-
formation is not provided.

A currently active HTML5 test suite maintained by HTML5lib developers contains
more than 3000 test cases to test the parsing algorithm. The HTML5lib test suite[3]
consists in two groups; tokenizer tests and tree construction tests. It is commonly used
by parsers implementations e.g. cl-html5-parser [22], Ragnarok [23], even WebKit
developers contributed with more than 250 test cases [24]. Although these tests were
originally created for the HTML5Lib parser, they were designed to be used in any
platform[25].

Holler et al.[26] used a Fuzz testing approach to test script interpreters, i.e. Javascript
and PHP, by generating random code using a grammar and previous failing programs.
This approach is difficult to apply to the HTML5 parser as there is no grammar yet
that represents the complex algorithm. Nevertheless an alternative to this method is to
develop an algorithm-based software to generate random test data.

Minamide and Mori[4] achieved to generate HTML documents to test the compat-
ibility across browsers and the consistency of the specification with their reachability

analyzer based on a translation of the algorithm into a conditional pushdown system.
However, this method has two limitations. Firstly, the translation only covers part of
the tree constructor, 24 HTML elements and 9 insertion modes. Secondly, formatting
element behaviour is excluded. Minamide and Mori stated that the formatting element
was excluded “because of difficulties with the destructive manipulation of the stack”.
In spite of this, the produced conditional push down system consisted in 487 states that
evidences how complex can be an equivalent grammar for the full algorithm.

2http://acid3.acidtests.org/

2.3. TESTING METHODS 25

Figure 2.2: Automated Oracle test process. A test case is processed by an Automated
Oracle that produces an expected result. The result is compared with the AUT result
in order to find any possible failure.

2.3.2 Oracle testing

An oracle test is defined by Shahamiri et al. [27] as “a reliable source of expected out-
puts”. The oracle test “must provide correct outputs for any input specified in software
specifications”[27]. Even though these outputs could be generated manually (human
oracles), it is recommended to use an Automated Oracle instead to ensure the testing
quality while reducing testing costs[27].

Shahamiri et al. [27] describe a general oracle process with the following activities:

1. Generate expected outputs.

2. Save the generated outputs.

3. Execute the test cases.

4. Compare expected and actual outputs.

5. Decide if there is a fault or not.

By using an Automated Oracle in the process, as shown in 2.2, the correct expected
results can be automatically generated for a set of inputs. If the Application Under
Test (AUT) generates a different output then this is a possible failure. However, as
Shahamiri et al. [27] highlights, the Automated oracle should behave like the software
under test in order to provide a reliable oracle.

Shahamiri et al. [27] realized a comparison analysis in automated oracle studies.
The ones relevant to this dissertation are described below.

Manolache and Kourie [5] proposed a N-Version Diverse Systems and M-Model
Program Testing. These methods relies on independent implementations of the AUT.

26 CHAPTER 2. BACKGROUND AND THEORY

N-Version Diverse Systems method requires whole software implementation whereas
the M-Model Program Testing method focus on specific functions of the software to be
tested. Shahamiri et al.[27] consider this costly and not highly reliable. Additionally as
Manolache and Kourie [5] warn, a key concern of N-Version Diverse Systems are the
“common-mode failures or coincident errors” which “occur when versions erroneously
agree on outputs”.

The second method is using a decision table. The decision table consist on a list of
a combination of input conditions and their respective output. As Shahamiri et al. [27]
mention, a limitation is the generation of manual outputs. Furthermore, it may not be
convenient if the combination of inputs are very large and complex.

The third study is an Info Fuzzy Network (IFN) Regression Tester. By using Arti-
ficial Intelligence methods, Last et al. [28] simulated the AUT behaviour to be a test
oracle. A previous version of the UAT receives random inputs and the outputs are used
to train the IFN model in order to be used as a automated oracle. This method depends
on a reliable previous version of the UAT and therefore is only applicable to regression
testing.

2.4 Summary

This chapter has reviewed the key aspects that surrounds HTML5 and its parsing al-
gorithm. It showed how error handling was a key concern in HTML5 and thus in the
design of the parsing algorithm.

Furthermore, testing methods studies relevant to this study were described. As
commented before, the selected method for the testing framework is based on N-
Version Diverse Systems. Chapter 4 details why this method was selected and how
was implemented.

The chapter that follows moves on to describe the methods for the design and
implementation of a HTML5 parser.

Chapter 3

HTML5 parser implementation

In order to fully understand the HTML5 parser specification functionality and concepts
as well as the implications and challenges, it was decided that the best approach was
to develop our own implementation.

The main requirement for the implementation is to be compliant with the specifi-
cation. The scope includes the tokenization and tree construction stages, and conse-
quently, the testing is focused on these components. Therefore, decoder and scripting
stages of the parsing architecture are not covered. These activities were not added to
the project plan due time limitation and therefore were left for future work.

3.1 Design

3.1.1 Overview

As described earlier, the parser is composed of a decoder, pre-processor, tokenizer and
tree constructor. The latter is capable of calling a script engine to run scripts. The
input is a stream of data and the output a DOM tree. The Appendix B shows the
overall design of the parser. Although both decoder and script execution steps were
not implemented a brief explanation will be given in order to have the overall picture
of the parser.

The role of the stream decoder is to receive a stream of data and converted into a
stream of Unicode code points depending on the input character encoding. A Unicode
code point can be a Unicode scalar value or an isolated surrogate code point . The
length of a Unicode code point is a byte unless is a pair of a high surrogate followed by
a low surrogate which must be treated as a single code point, even though the length is

27

28 CHAPTER 3. HTML5 PARSER IMPLEMENTATION

two bytes. In order to determine the character encoding the specification provides an
algorithm called ”encoding sniffing algorithm”. In this dissertation the term character
refers to a Unicode code point for the sake of readability.

The stream of characters must be preprocessed before passed to the tokenizer stage.
The pre-processor validates invalid Unicode characters or isolated surrogates by raising
a parse error and prepares the stream of characters, i.e. by removing ’CR’ (carriage
return) characters for the next stage the tokenizer.

The next step is to pass the stream of characters to the tokenizer stage. The tok-
enizer will attempt to create tokens from the stream. The tokenizer may create several
tokens; however, only when the algorithm indicate to emit a token, this is sent to the
tree constructor.

The tree constructor may receive one or more tokens. Similar to the tokenizer, the
tree constructor will attempt to create nodes and append them to the DOM tree from
the tokens emitted by the tokenizer. When finishing processing tokens, the control is
returned to the tokenizer unless the tree constructor triggers the stop parsing procedure.

When the stop parsing procedure is triggered, the parser run the steps indicated in
the algorithm and then the DOM tree is returned.

As the HTML5 parser accept invalid documents, any parse error is clearly indicated
in the algorithm and these do not trigger the parser to stop. In this design any error is
added to a list or errors and optionally displayed in the log.

A parser context was designed in the parser life cycle to hold several elements
that are shared among the components described above. It contains the states of the
tokenizer and tree constructor objects, i.e. current tokenizer state and current insertion
mode. The reason is that one object can alter the state of the other one when some
conditions are met. The tree in Figure 3.1 shows the different types of elements that
form part of the parser context. When the parser is created all these elements are
initialized according to the specification. The reason to create this context object was
due to the high dependency between the tokenizer and tree constructor. With this
design it was easier to access these properties by passing the context as an attribute to
the parser components. The downside is the larger size of the parser context class.

Additionally, the specification defines a considerable amount of inner algorithms
or procedures which may be run from different sources of the parser, specifically from
the different insertion modes. To tackle the algorithms were implemented in individual
static classes as shown in Figure 3.2. This design allowed us to divide the coding
tasks between the team members and decrease the coding process difficulty. Moreover,

3.1. DESIGN 29

Context
Document (tree root)
States

Tokenizer state
Insertion mode

Stacks
Open elements
Template insertion modes

Lists
Active formatting elements

Flags
Scripting
Force quircks
Parser pause
Frameset-ok
Foster Parenting
HTML fragment parser

Variables
Tokenizer Variables

Next input character
Current input character
Temporary buffer

Tree Constructor Variables
Original Insertion Mode
Current Template Insertion Mode
Adjusted Current Node
Current Node
Head element pointer
Form element pointer
Current token

Figure 3.1: Parser Context. Lives within the parser life cycle and contains elements
shared between the parser objects.

this design helps to facilitate the algorithm transliteration while keeping high cohesion
between parser components.

3.1.2 State design pattern

The adoption of the state pattern design was very helpful in the implementation due to
the fact that both tokenizer and tree constructor represents finite state machines. This
subsection will show the characteristics of such a design and the justification of why
this pattern was selected.

The state pattern design is one of the behavioural patterns for object-oriented soft-
ware defined by Gamma et al. [29] that allows an object to change its behaviour de-
pending on its state.

The Figure 3.3 shows an abstract class diagram for the state design pattern. The
context class is the interface that a client call. This context has an abstract state rep-
resenting the current state that is implemented by concrete states. Such states define
different behaviours and transitions depending of the input data. In addition, the cur-
rent state could be changed by the context or a particular state.

The benefits of using this design pattern are:

1. All behaviour of a state, in this case the steps described for each state, are put in

30 CHAPTER 3. HTML5 PARSER IMPLEMENTATION

Figure 3.2: Java classes representing different algorithms

Figure 3.3: State design pattern class diagram

3.1. DESIGN 31

a particular class, increasing the low coupling and high cohesion between states.

2. The states are easy to maintain and easy to add more without changing the con-
text or any other class.

3. A large amount of conditional statements is represented by few lines in the con-
text.

3.1.3 Tokenizer

The tokenizer is the stage that receives characters and generate tokens. This is defined
in the specification as a state machine.

Ideally the tokenizer can be modelled as:
(Σ,S,s0,δ,F)

Where:
Σ is the set of characters
S is the set of 68 tokenizer states
s0 is the initial tokenizer state: Data state
δ is the transition function δ : S x Σ→ S.
F is the set of final states {Data state, RCDATA state, RAWTEXT state, Script

data state, PLAINTEXT state}
The set of characters are all those possible values from the Unicode standard database

[17].
The tokenizer states are the 68 states defined in the specification. The specification

is confusing in the sense that the last subsection Tokenizing character references is
stated as a state though after analyzing every state, there is no transition towards it,
therefore it was considered as an algorithm that attempts to return character tokens
from a numeric or named reference.

The transitions are defined in each tokenizer state, which receives a character and
as result it may create and/or emit a token, may switch the state and may update an
element from the context. However, one limitation in the design was that the tokenizer
can only read and process one character at the time, making it difficult to implement
some states that look ahead several characters before doing a transition.

The set of final states are basically those that emit an end of file token. An end
of file token may be emitted as a consequence of consuming the EOF character. The
EOF character is a conceptual character that represents the end of the stream or as the
specification defines, a lack of any further characters. In our design has a value -1.

32 CHAPTER 3. HTML5 PARSER IMPLEMENTATION

Figure 3.4: Class diagram of tokenizer and related classes

The Figure 3.4 shows the design of the tokenizer. In order to tokenize a stream,
the class Tokenizer calls the method process of the current TokenizerState. This state is
retrieved from the ParserContext. As we can see, the TokenizerState is able to access
and update any public element from the parser Context. That is, can read the next input
character from the stream, do the transition to another state or remain in the same and
access to other variable if indicated in the specification.

3.1.4 Tree constructor

When tokens are emitted by the tokenizer, the tree constructor immediately process
them. Each token goes through an algorithm called tree construction dispatcher that
basically push the token to the below state machine if it is HTML content; otherwise
it is considered as a foreign content and a different list of steps must be followed
described in the rules for parsing tokens in foreign content section.

The design of the tree constructor is very similar to the tokenizer with the difference
that the input are the tokens generated by the tokenizer and the output is the updated
DOM tree. Additionally the machine output, i.e. the DOM tree, depends on the stack

of open elements state, the list of active formatting elements and the stack of template

insertion modes. The former also affects the behaviour, i.e. the transitions.
Although it is not entirely correct due to it excludes the data structures mentioned

before, for the sake of comprehensibility, the tree constructor may be modelled as:
(Σ,S,s0,δ,F)

Where:
Σ is the set of tokens described in the previous section.
S is the set of 23 insertion modes

3.1. DESIGN 33

Figure 3.5: Class diagram of TreeConstructor and related classes

s0 is the initial insertion mode: Initial

δ is the transition function δ : S x Σ→ S.

F is the set of final states {In Body, In Template, After Body, In Frameset,
After Frameset, After after body, After after frameset }

The transitions are defined within each insertion mode which receives a token and
as a result it may update the DOM tree, may switch the insertion mode and may update
an element from the context (even the tokenizer state). Some insertion modes, depend-
ing on the token being processed, run steps from other insertions. Finally most of the
algorithms are extensively reused across the insertion modes.

The set of final states are those that indicates to run the stop parsing procedure.
After this, the parser returns the DOM tree generated from the parser context object.

The Figure 3.5 shows the design of the tree constructor. The class TreeConstruc-

tor provides a method consumeToken which calls the method process of the current
InsertionMode. This state is retrieved from the ParserContext. Similar to the tokenizer
design, the TreeConstructor has access to the elements of the ParserContext.

The capability to fix mis-nested content is an important feature of the tree con-
structor. The adoption agency algorithm, is an algorithm that is executed by the tree
constructor when some conditions are met. Such algorithm can change the DOM tree
structure by moving a node to a different parent. For instance in Figure 3.6, when
after parsing the character ’2’, the current tree has two children in body node, being
character ’2’ child of node ’p’. However when the end tag ’b’ is parsed, the adoption

agency algorithm is run and the character ’2’ is detached from the node ’p’ and moved
into the node ’b’. Finally ’b’ is appended as child of ’p’. This was the main limitation
in the Minamide and Mori[4] attempt to generate a conditional push down system.

34 CHAPTER 3. HTML5 PARSER IMPLEMENTATION

Input Tree after parsing ’2’ Output

1<p>2< / b>3< / p> <html>
<head />
<body>

1< / b>
<p>2< / p>

< / body>
< / html>

<html>
<head />
<body>

1< / b>
<p>

2< / b>3< / p>
< / body>

< / html>

Figure 3.6: A misnested tag example

Input Output

<h1>Thi s c o n t a i n s
e r r o r s

<html>
<head />
<body>

<h1>Thi s c o n t a i n s e r r o r s< / h1>
< / body>

< / html>

P a r s e r e r r o r s :
Unexpec ted t o k e n : e n d o f f i l e v a l u e : n u l l a t com . h t m l 5 p a r s e r

. i n s e r t i o n M o d e s . InBody@5d624da6

Figure 3.7: Parsing example showing a parse error. The closing tag h1 is missing,
instead an EOF was encountered.

3.1.5 Error handling

The specification indicates when a parser error is raised by just stating the sentence
This is a parse error. The specification then describes how to handle the error, however
does not define a name or type of error. It is up to the developers to decide the message
error. In this implementation it was decided to add them into a stack of parser errors
inside the context object, thereby they can be displayed in the log as shown in Figure
3.7 . Due to this, the parser context object is almost in every class of our application.

3.2 Building

Java was the programming language chosen for developing the parser. As the main
requirement of the implementation was to learn and understand the specification, and
secondly, to be compliant with the specification, there was no restriction concerning
which language to be used. The following are the reasons why Java was chosen:

3.3. TESTING 35

1. High level of experience of team members.

2. Portability, i.e. the binary can be run on any device that has installed a Java
Virtual Machine.

3. Object-oriented paradigm. It is possible to take advantage of its encapsulation,
polymorphism, and inheritance features. This allows the application of the state
pattern previously described.

4. Garbage collection feature; this helps to avoid memory leaks.

5. It is supported by a large community.

No external libraries were used apart from the native Java libraries. Github was
used as repository for the code. The source code can be accessed through the following
URL: https://github.com/HTML5MSc/HTML5Parser.

The development activities were divided between the team following Agile tech-
niques such as working in sprints, pair programming, sprint and product backlog, stand
up meetings and sprint retrospectives. Trello1 was a helpful tool to organize and keep
track of the progress.

3.3 Testing

Prior to the development of the test framework, the parser implementation was testes
with the HTML5Lib suite, in order to fix errors and bugs. The HTML5Lib test suite
can be retrieved from their Git repository as well as detailed information about the
test formats[3]. JUnit2, a Java framework to write tests, was used to develop a test
runner to retrieve the files from the repository and run the tests. What follows is a brief
description of the test formats.

3.3.1 Tokenizer

The format of the tokenizer tests use a JavaScript Object Notation (JSON) notation.
Such format is shown in the Figure 3.1.

1https://trello.com/
2http://junit.org/

https://github.com/HTML5MSc/HTML5Parser

36 CHAPTER 3. HTML5 PARSER IMPLEMENTATION

{” t e s t s ” : [
{” d e s c r i p t i o n ” : ” T e s t d e s c r i p t i o n ” ,
” i n p u t ” : ” i n p u t s t r i n g ” ,
” o u t p u t ” : [e x p e c t e d o u t p u t t o k e n s] ,
” i n i t i a l S t a t e s ” : [i n i t i a l s t a t e s] ,
” l a s t S t a r t T a g ” : l a s t s t a r t t a g ,
” i g n o r e E r r o r O r d e r ” : i g n o r e e r r o r o r d e r
}

]}

Listing 3.1: Tokenizer test format using JSON.

The description field is only a description of the test. The input is the string to be
parsed. The test may contain a list of initialStates, meaning the test has to be executed
with each of these states. The lastStartTag means the tag name of the last start tag
to have been emitted from the tokenizer. The ignoreErrorOrder is a Boolean that
indicates whether the order of errors are validated. The output is a list of expected
tokens. The format of valid tokens are shown in Listing 3.2. When a StartTag has a
third value true, means that is a self-closing tag. The string ParseError indicates that
a parse error was raised. Our test runner just compares the number of these incidences
and not the value or reason of error. The disadvantage is that there is not possible to
validate the location or reason of error, only the number of them.
[”DOCTYPE” , name , p u b l i c i d , s y s t e m i d , c o r r e c t n e s s]
[” S t a r t T a g ” , name , { a t t r i b u t e s }∗ , t r u e ∗]
[” S t a r t T a g ” , name , { a t t r i b u t e s }]
[” EndTag ” , name]
[” Comment ” , d a t a]
[” C h a r a c t e r ” , d a t a]
” P a r s e E r r o r ”

Listing 3.2: Expected tokens test format.

3.3.2 Tree builder

The HTML5Lib tree construction tests are more like testing all the parser than only
the tree constructor. That is, the input is a string instead of a list of tokens. Therefore
these tests depend on the correct functionality of the tokenizer. The format consists of
any number of tests separated by two lines and a single line before the end of the file.
The test may contain several options, however, the minimum are:

• #data: The input string

• #errors: Expected errors

3.4. SUMMARY 37

• #document: The expected DOM tree

The #document is the DOM tree serializing each node in one line. Each line must
start with the character pipe (’|’) followed by two spaces per level of depth. The Listing
3.3 shows the test for the example of misnested tags seen in Figure 3.6. A detailed
specification can be found in the HTML5lib tests online respository3.

d a t a
1<p>23</p>
e r r o r s
E r r o r
E r r o r
document
| <html>
| <head>
| <body>
|
| ”1”
| <p>
|
| ”2”
| ”3”

Listing 3.3: Tree Constructor test example.

3.4 Summary

This chapter has described the methods used to develop a HTML5 parser by following
the specification parsing algorithm. The state design pattern was used to implement the
Tokenizer and Tree Contructore components of the parser. The language selected was
Java because of its features and the previous experience the team has. The HTML5Lib
test suite along with JUnit were used to evaluate the parser and fix outstanding er-
rors. Moreover, challenges and implications encountered throughout the implemen-
tation were also discussed. Similarly, the next chapter describes the procedures and
methods used for the test framework implementation.

3https://github.com/html5lib/html5lib-tests/tree/master/tree-construction

https://github.com/html5lib/html5lib-tests/tree/master/tree-construction

Chapter 4

Test Framework

This chapter moves on to the design and implementation of the test framework. Based
on N-version diversity systems, a test framework was build to measure the level of
convergence among parsers and thus have an approximation of their level of compli-
ance with the specification. The first section describes the design of the framework, its
architecture, parser adapters and the Comparator and plurality algorithm responsible to
generate the results. The second section describes how these components were built.
Finally, a brief description of other components of the framework is given.

4.1 Design

4.1.1 Architecture

Our approach was influenced by the N-version diversity, known for being used in fault-
tolerant systems, similar to Manolache and Kourie [5] M-mp testing strategy. The
design described in this section compares the results of independent developed HTML5
parsers. Then the plurality agreement is selected as the correct result.

Below are described the advantages and disadvantages of this method.

Advantages

• Can take any web page or any piece of HTML as test input. Therefore, using
existing HTML from the Web saves the effort to create test cases.

• Can find disagreements among parsers that lead to a parser bug or even a speci-
fication bug.

38

4.1. DESIGN 39

• A disagreement may represent a new test case to add to the test suite after
analysing the test.

Disadvantages

• A successful result does not mean that it fully conforms to the specification.
Moreover it might be a bug in all winner implementations. This is a common-

mode failure, previously defined in Chapter 2.

• A disagreement still has to be manually analysed to know what is the reason and
probable error.

A diagram of the whole architecture of the framework is shown in Figure 4.1. An
overview to its components is given below.

The input can be an HTML document as a string, from a URL, a file or a set of
documents, e.g. from a Web ARChive (WARC) file. A WARC file is a format to
archive HTML responses. A more detailed description is given in Chapter 6

The input preprocessing prepares the input for the parsers. For example, if the
input is a test of cases, they must follow a certain file structure in order to be processed
by the parsers.

Then the input is parsed by a set of parsers that are part of the test. As every parser
may serialise the output tree differently, a custom adapter must be used to serialise
the output with a common format, hence the outputs can be compared.

The next step is the execution of the comparator which compares the tree outputs
and finds the most likely correct output by using a plurality voting algorithm. The
output is a report file in XML and a set of files containing the disagreements.

Finally, a Web application UI presents the report and disagreements in a human
readable interface. Additionally, a tracer can be enabled in MScParser implementa-
tion to show which parts of the specification algorithm were executed by running a
particular test.

4.1.2 Adapters

As was pointed out in the previous subsection, an adapter must be created in order
to include a parser in the framework. Every adapter must serialise the same output
format to be comparable. In order to have an adapter working in the framework, it
must comply with the following specification.

40 CHAPTER 4. TEST FRAMEWORK

Figure 4.1: Test framework architecture. Designed along with Anaya[1]

4.1. DESIGN 41

The adapter must provide three services, parse a string, parse a file and parse a
document from an URL. It is recommended to follow the next execution syntax:

1. To parse a string: -s [string]

2. To parse a file: -f [path to file]

3. To parse a document from an URL: -u [url]

Additionally, the adapter must encode and decode in UTF-8 due to the project
scope. It must serialise according to the HTML5lib test suite format, as described
in section 3.3.2. And the scripting flag1 must be enabled. These guidelines must be
followed to ensure the same output across parser adapters. It was decided to delimit
the scope by only testing the behaviour with the scripting flag set as true. The reason
was that several parsers, e.g. Parse 5, HTML5Lib and Jsoup, did not implement this
behaviour.

It was decided that the best format to serialise the output trees was the HTML5Lib
format. This format is widely used and it is simple, reliable and language indepen-
dent. However, a limitation is that it cannot be parsed again as HTML. This limitation
could be solved by serialising again to HTML, although this approach was rejected
because it was considered that it would require greater effort for the designing and
implementation.

4.1.3 Comparator and plurality agreement

The comparator is the component responsible for comparing the outputs trees gener-
ated by each parser from a single HTML input and for selecting the most likely correct
output based on plurality voting. A plurality is the element that have more votes, or
in this case, more agreements. Thus majority differs from plurality, by the fact the
element must have more than the half of total votes[30]. Therefore a plurality may
not be unique. Although if this case is presented then, in this design, is considered no
plurality.

A plurality voting was chosen over majority voting because of the following sce-
nario (third scenario in Table 4.1). Assuming we have two compliant parsers that
produce the same output and three not compliant parsers that produce unique different
outputs, then there is a plurality but not a majority. Therefore a plurality voting results

1http://www.w3.org/TR/html5/syntax.html#scripting-flag

http://www.w3.org/TR/html5/syntax.html#scripting-flag

42 CHAPTER 4. TEST FRAMEWORK

Scenario Majority Plurality
All trees are equal Yes Yes
The largest group of identical trees repre-
sents more than the half of total trees

Yes Yes

The largest group of identical trees does not
represent more than the half of total trees

No Yes

There is not a unique largest group of iden-
tical trees

No No

All trees are different No No

Table 4.1: Majority VS Plurality. Possible scenarios when comparing output trees

in two correct parsers whereas in majority zero correct parsers, even if one agreement
was given.

4.2 Building

The building consisted in the following:

1. Adapters. Each adapter had to be developed in the same language as each
parsers.

2. Parser Runner. The adapters could be run manually, however an small bash
script was developed to run them all with the same input. The output are the trees
generated from the parsers organized as described in the following Subsection
4.2.2.

3. Comparator. This program compares and creates a report with the results in
a XML file. We started developing the comparator in bash, however several
limitations were encountered. First, the team did not have experience with this
language thus productivity was slow. Second, the decision to use a XML file to
store the results led to use Java, because the team had a better knowledge of the
Java API for XML Processing (JAXP) library.

Same as with the parser implementation, Github was used as repository. Source
code can be found in https://github.com/HTML5MSc/HTML5ParserComparator.
Maven2 can be used to build the application and retrieve all dependencies.

What follows is a description of the above software components.

2https://maven.apache.org/

https://github.com/HTML5MSc/HTML5ParserComparator

4.2. BUILDING 43

4.2.1 Parser adapters implementations

Every adapter must produce the HTML5lib test format output as described in Subsec-
tion 3.3.2 in order to compare them and find the disagreements. The tree format is
described in detail in the HTML5lib test suite on-line repository3.

The development of an adapter can be quite challenging. It depends on the lan-
guage and implementer. For example, some implementations had the code already for
building the tree with the required output format, a reason why this format was chosen.
However with other parsers, including ours, it was necessary to code it. Moreover,
even if the implementation had already a serializer, i.e. html5lib and parse5, some
fixes were done in order to obtain the desired output.

As an example, a piece of code of the HTML5lib adapter is shown in Listing 4.1.
The testSerializer (line 12) was reused to give the HTML5lib test format, however, a
convertTreeDump method was developed to fix some extra spaces generated. Observe
the use of UTF-8 encoding.

1 p = h t m l 5 p a r s e r . HTMLParser (t r e e = h t m l 5 l i b . g e t T r e e B u i l d e r (”dom”) , namespaceHTMLElements
= F a l s e)

2
3 i f l e n (s y s . a rgv) == 3 :
4 i f s y s . a rgv [1] == ’−f ’ :
5 wi th open (s y s . a rgv [2] , ” rb ”) a s f :
6 document = p . p a r s e (f , e n c o d i n g =” u t f −8”)
7 i f s y s . a rgv [1] == ’−s ’ :
8 document = p . p a r s e (s y s . a rgv [2])
9 i f s y s . a rgv [1] == ’−u ’ :

10 wi th c l o s i n g (u r l o p e n (s y s . a rgv [2])) a s f :
11 document = p . p a r s e (f)
12 o u t p u t = p . t r e e . t e s t S e r i a l i z e r (document)
13
14 p r i n t conver tTreeDump (o u t p u t . encode (’ u t f −8 ’))

Listing 4.1: Html5Lib adapter piece of code showing how the parser must be created
in order to obtain the output format required for the test framework.

4.2.2 Preparing the input

Single test

In order to compare one test, the files containing the output trees of the parsers in
testing must be placed inside a folder with the name of the test. Each of these files

3https://github.com/html5lib/html5lib-tests/tree/master/tree-construction

https://github.com/html5lib/html5lib-tests/tree/master/tree-construction

44 CHAPTER 4. TEST FRAMEWORK

Figure 4.2: Single test. A folder contains the output trees from different parsers.

Figure 4.3: Multiple test. A folder contains sub folders that represent the tests.

should have as name the name of the parser that generates it. The Figure 4.2 illustrates
the above.

Multiple tests

In order to compare a set of tests, they must follow the single test file structure and be
inside a parent directory. The Figure 4.3 illustrates this file organization. The output
of the parser runner follows this structure.

4.2.3 Comparator

A Java application was developed to implement the comparator. This comparator is
able to generate a report from a single test or a set of tests.

The first step was to compare and group the parsers with identical trees, i.e. agree-
ments. Then the parsers that are plurality are selected according to the plurality voting

4.3. OTHER FRAMEWORK FEATURES 45

Figure 4.4: Disagreement file example. This file store the differences against the most
likely correct tree.

algorithm. Finally the disagreements and the plurality result are added into a report
XML file which is next described.

Report

The XML technology let us organize tests and the results of the parsers in a tree struc-
ture. This format will also let any language with XML capabilities to read, query
and/or process the report. The Java library Java API for XML Processing (JAXP) was
used to create and process the report file.

The first approach was to add the parser outputs and result of the comparator in the
report. However, a problem was found when parsing a large amount of data. The JAXP
library have a memory size limit for storing the DOM tree. The comparator stopped
working when reaching this limit, because of the big size of the report file. This led
us to store the parser outputs outside the XML file, in external binary files. Thus, the
XML file provides the paths to these files.

Moreover, in order to reduce even more the disk usage and avoid identical files
because of identical parser outputs, it was decided to store only the most likely correct
input and the differences with the other outputs. The figure 4.4 shows an example.
Concatenated blocks indicate the location of the difference, the length of difference
and the difference. The upside is an increase in computability whereas the downside is
that a processor for this type of file has to be developed in order to show the differences
in a human readable output.

4.3 Other framework features

4.3.1 Web Interface

A web application user interface (UI) was developed to visualize the contents of a
report in a more human readable way. Furthermore it simplifies the navigation through
the disagreements and provides different utilities to improve the user experience and

46 CHAPTER 4. TEST FRAMEWORK

Figure 4.5: Web application UI screen shot. This image shows two output trees and a
difference in red color.

analysis of the results. The Figure 4.5 illustrates a screen shot of the web application
showing a difference between two trees.

4.3.2 Tracer

A tracer was developed in by Anaya using the parser implemented in this study de-
scribed in section 3. This tracer provides a log of the different sections touched by
parsing an HTML document and can be used to find and trace bugs in a parser. More
information can be found in Anaya’s work [1].

4.4 Summary

The test framework developed is based on N-version diversity systems and consists
of a input preprocessing, parsers to be evaluated along with their custom adapter, the
Comparator, the Web Application and Tracer.

This chapter described the design and implementation of these components. Parsers
adapters must follow a defined specification in order to generate the outputs trees with
the HTML5Lib format. Then, the Comparator compares these output trees and decides
which parsers are most likely to have the correct output by following a plurality algo-
rithm. Moreover, it was explained how single and multiple tests can be done, and how

4.4. SUMMARY 47

they have to be organised in the file system.
In order to execute the test framework, a group of parsers and a set of input test

cases have to be selected. The next chapter shows a survey of HTML5 parsers and lists
the parsers selected whereas Chapter 6 describes the method for sampling the Common
Crawl data to obtain a set of test cases.

Chapter 5

HTML5 parsers survey

The purpose of this chapter is to present a survey of HTML5 parsers. This research
helped to choose which parsers could be part of the test framework. For this study,
the parsers that used and passed the HTML5Lib test suite had more priority because a
disagreement would represent a missing test for the test suite or a potential bug in the
specification.

The most known implementations, and probably the most important, are those used
by the HTML browsers. The parser is part of their layout engines. For example
Chrome uses Blink1, Safari use Webkit2, Internet Explorer uses Trident3 and Fire-
fox uses Gecko 4. Additionally, Mozilla is currently working on a new engine called
Servo. While all rendering engines above were coded in C++, Servo is being coded
in Rust language looking to exploit its parallelism power and increase performance
considerably [31].

In addition to be used in browsers, an HTML5 parser can also be used as a:

• Validator. i.e validating documents against the HTML specification.

• Checker. i.e fixing documents in order to conform to the HTML specification.

• Sanitizer. i.e. removing some data from the HTML document to avoid cross-site
scripting attacks.

• Minifier. i.e. reducing the size of a document while preserving the same func-
tionality.

1http://www.chromium.org/blink
2https://www.webkit.org/blog/1273/the-html5-parsing-algorithm/
3https://msdn.microsoft.com/en-us/library/aa741312%28v=vs.85%29.aspx
4https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/HTML5_Parser

48

http://www.chromium.org/blink
https://www.webkit.org/blog/1273/the-html5-parsing-algorithm/
https://msdn.microsoft.com/en-us/library/aa741312%28v=vs.85%29.aspx
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/HTML5_Parser

49

Parser Language Html5lib
tests1

Compliant with Last release ver-
sion

Last Update

AngleSharp C# Yes W3C8 0.9.0 26/08/2015
parse5 javascript Yes WHATWG 1.5.0 24/06/2015
Html5lib python Yes WHATWG 1.0b7 07/07/2015
jsoup Java No WHATWG 1.8.3 02/08/2015
validator.nu Java Yes2 WHATWG 1.4 29/05/20153

cl-html5-parser4 Common
Lisp

Yes WHATWG Unknown 17/07/2014

html5ever5 Rust Yes6 WHATWG Not released yet 31/08/20157

tagsoup Haskell No No specified 0.13.3 01/10/2014
html 3 Dart Yes WHATWG 0.12.1+2 06/07/2015
gumbo C99 Yes WHATWG 0.10.1 30/04/2015
Hubbub C Yes WHATWG 0.3.1 08/03/2015
html5-php Php No W3C 2.1.2 07/06/2015
html Go Yes WHATWG Unknown 28/07/2015
HTML::HTML5::Parser perl Yes No specified 0.301 08/07/2013

1 The value ”No” means that there is no information provided nor tests included in the source code that indicates the use of
HTML5lib test suite.

2 Assumed from the acknowledgements section of their page.
3 This is the date of the last update of the source code, since the binay file have not updated. The binary file last update in

maven is 05/06/2012.
4 Html5lib port.
5 Currently under development.
6 Currently passes all tokenizer tests and most of tree builder.
7 This is the date of the last update of the source code, since this parser is under development.
8 W3C compliant with some WHATWG extensions.

Table 5.1: HTML5 parser survey

• Scraper. i.e. extracting relevant data.

Table 5.1 shows an overview of a list of some HTML5 parsers that can be found on
the web. The search was done mainly using the Google search engine and in GitHub
repositories. Some of their websites had links to another parsers. Those parsers that
explicitly state that they parse HTML5 were included here. It can be seen that mostly
all implementations of the WHATWG specification but jsoup use the HTML5lib test
suite. On the other hand W3C implementations use their own test suite. A more
detailed table can be found in Appendix C.

Additionally to the parsers presented in the previous table, the following list shows
those parsers that are port of gumbo parser[32].

• C++: gumbo-query by lazytiger

• Ruby:

– ruby-gumbo by Nicolas Martyanoff

– nokogumbo by Sam Ruby

• Node.js: node-gumbo-parser by Karl Westin

50 CHAPTER 5. HTML5 PARSERS SURVEY

• D: gumbo-d by Christopher Bertels

• Lua: lua-gumbo by Craig Barnes

• Objective-C:

– ObjectiveGumbo by Programming Thomas

– OCGumbo by TracyYih

• C#: GumboBindings by Vladimir Zotov

• PHP: GumboPHP by Paul Preece

• Perl: HTML::Gumbo by Ruslan Zakirov

• Julia: Gumbo.jl by James Porter

• C/Libxml: gumbo-libxml by Jonathan Tang

The parsers selected for this experiment are following. Parse5, validator.nu and
html5lib were chosen because they claim to pass all HTML5lib[33][34][3]. Further-
more, parse5 developers has a faster performance according to their developers[33].
The benefit comes when parsing a large set of HTML documents as input test, re-
ducing the time of the experiment. On the other hand, validator.nu was also chosen
because a port in C++ is used in Gecko engine[34]. The benefit is that we could have a
similar behaviour of Mozilla Firefox, one of the major browsers. Jsoup was chosen be-
cause it appears to be widely used in the Java community[35]. Anglesharp was chosen
by one of the members of the team because he has experience with the C# language.
Finally our implementation was also included as a evaluation and also to prove how
compliant is a new parser that passes all HTML5lib test suite.

1. parse5

2. validator.nu

3. html5lib

4. jsoup

5. AngleSharp

6. MScParser

5.1. SUMMARY 51

Although it would be very interesting to add the browsers parsers, the reason why
they were not included was because they are not standalone. Therefore, it represents
a considerable effort to extract the parser from the browser engine. According to the
dissertation plan, it was considered not feasible to include such an activity.

5.1 Summary

A survey of HTML5 parsers with relevant information to this study was presented in
this section. The parsers selected to be in the execution of the test framework are
parse5, validatorNU, html5lib, jsoup, AngleSharp and the parser developed in this
project MScParser.

Chapter 6

Common crawl data set as source of
test cases

Different sources of HTML documents were considered as test cases. First, manually
created tests. This method would be similar to the HTML5Lib test suite, therefore in-
stead we used this suite to avoid duplicating work already done. Second, automatically
created random HTML documents. After doing an small HTML5 random generator
it was found that it is not a trivial task. It requires a very good knowledge of all el-
ements of the specification in order to have the maximum coverage. Moreover, a big
effort would be required to create a robust algorithm capable to generate useful HTML
code, instead of generating a bunch of useless random text. Furthermore, Minamide
and Mori[4] work has shown the difficulty to produce a grammar for the generation
of random test cases. Third, use the web as a practically unlimited source of real test
cases. Although the ideal testing would be a full coverage of the web, such process
would require an enormous amount of resources. A simpler solution would be testing
the free to use Common crawl data set. Common crawl have been storing a very large
amount of web resources from the web. Even processing the whole Common crawl
data set represents a difficult challenge. Therefore it was decided to obtain a uniform
random sample representative of the Common crawl corpus.

On the other hand, another method analysed was the use of a web sampling tech-
nique. Baykan et al.[36] investigated and compared different web sampling techniques
based on random walks. This method may provide more reliability for the sample.
Again, Common crawl approach was chosen over a web sampling technique because
it is simpler to obtain random records from the common crawl than implementing one
of the algorithms for web sampling.

52

6.1. COMMON CRAWL INTRODUCTION 53

In addition to the html5lib test suite, a random sample of HTML documents was
extracted from the Common crawl data set to be the input set of test cases for the
test framework. What follows is a description of the Common crawl data set and the
Common crawl index, a useful project for the sampling process.

6.1 Common crawl introduction

Common crawl is a non-profit organization dedicated to providing a copy of the inter-
net at no cost[37]. Common crawl stores HTTP responses obtained with a Nutch-based
web crawler that makes use of the Apache Hadoop project. Before blekko1 was ac-
quired by IBM in March 2015, Common crawl used a list of URL’s provided by blekko
URL ranking information. Nowadays it appears that Common crawl is using a static
list of URL’s primarily composed of the blekko sourced data[38]. The data is stored on
Amazon Simple Storage Service (S3) as part of the Amazon Public Datasets program
and every month a new crawl archive is released.

Amazon S3 uses the following concepts[39]:

1. Bucket. Is the container for objects.

2. Object. Consist of object data and metadata.

3. Key. Unique identifier for an object within a bucket.

4. Region. The physically location of servers where buckets and therefore data is
stored.

The common crawl dataset is stored in the bucket aws-publicdatasets which is in
the region US East (Virginia) region. An example of a particular key is ”common-
crawl/crawl-data/CC-MAIN-2015-22/segments/1432207930895.96/warc/ CC-MAIN-
20150521113210-00139-ip-10-180-206-219.ec2.internal.warc.gz”.

Advantages

1. It stores a very large amount of HTML pages, i.e. June 2015 archive is over
131TB in size and holds more than 1.67 billion webpages2.

1Web search engine similar to Google.
2http://blog.commoncrawl.org/2015/07/june-2015-crawl-archive-available/

54 CHAPTER 6. COMMON CRAWL DATA SET AS SOURCE OF TEST CASES

2. The data is free via Http or S3.

3. There are free frameworks to use, e.g. IIPC’s Web Archive Commons library3

and Amazon Web Services (AWS) SDK4, that facilitate the access and process-
ing of the data.

4. A complementary project called Common Crawl Index[40], provides an index
for the common crawl data set. Useful for the sampling process.

Disadvantages

1. May not be a good representation of the whole web. It has been difficult to find
more information about the crawling process, therefore the constitution of the
monthly crawl archive is uncertain.

2. It could be that the data set is biased to English web pages[38].

Despite of the weaknesses, Common crawl was chosen as a sample source due to is
a public data set free to use and along with IIPC Web Archive Commons and Amazon
web services, it provides a powerful and simple work environment for working with
large data.

6.2 Common crawl corpus description

The Common crawl corpus consists in three formats which are:

• Web ARChive (WARC) Format. This format is the raw crawl data which in-
cludes the HTTP response (WARC-Type: response), how the information was
requested (WARC-Type: request) and metadata of the crawl process itself (WARC-
Type: metadata).

• WAT format. This includes important metadata about the records stored in the
WARC format. i.e. if the response is HTML, the metadata includes the links
listed on the page.

• WET format. This includes only extracted plaintext.

3https://github.com/iipc/webarchive-commons
4https://aws.amazon.com/es/tools/

https://github.com/iipc/webarchive-commons
https://aws.amazon.com/es/tools/

6.3. COMMON CRAWL INDEX 55

HTML documents are in the WARC files, specifically in the WARC-Type: response
section. Though not all responses return an HTML document, for example the Picture
shows an image response 6.1. WARC files are compressed gzip files. Every monthly
crawl contains a collection of WARC files, of 1 gigabyte average. Each WARC file is
a concatenation of several records.

WARC/ 0 . 1 6
WARC−Type : r e s p o n s e
WARC−Targe t−URI : h t t p : / / www. a r c h i v e . o rg / images / l o g o c . j p g
WARC−Date : 2006−09−19T17 : 2 0 : 2 4 Z
WARC−Block−D i g e s t : sha1 :UZY6ND6CCHXETFVJD2MSS7ZENMWF7KQ2
WARC−Payload−D i g e s t : sha1 :CCHXETFVJD2MUZY6ND6SS7ZENMWF7KQ2
WARC−IP−Address : 2 0 7 . 2 4 1 . 2 3 3 . 5 8
WARC−Record−ID : <urn : uu id :92283950− e f 2 f −4d72−b224−f54c6ec90bb0>
Conten t−Type : a p p l i c a t i o n / h t t p ; msgtype= r e s p o n s e
WARC−I d e n t i f i e d −Payload−Type : image / j p e g
Conten t−Length : 1902

HTTP / 1 . 1 200 OK
Date : Tue , 19 Sep 2006 1 7 : 1 8 : 4 0 GMT
S e r v e r : Apache / 2 . 0 . 5 4 (Ubuntu)
Las t−Modi f i ed : Mon , 16 Jun 2003 2 2 : 2 8 : 5 1 GMT
ETag : ”3 e45−67e−2ed02ec0 ”
Accept−Ranges : b y t e s
Conten t−Length : 1662
C o n n e c t i o n : c l o s e
Conten t−Type : image / j p e g

[image / j p e g b i n a r y d a t a h e r e]

Listing 6.1: WARC response example

6.3 Common crawl Index

As was pointed out earlier, the Common crawl Index[40] is useful for the sampling
process. The common crawl index provides the location of WARC records of the
Common Crawl data set, mostly used for querying URL’s. The common crawl Index
is generated with each monthly common crawl archive(collection). Moreover is also
stored on S3, in the same bucket as the Common crawl data set, and is free to use,
though currently an Amazon Web Services (AWS)5 account is required to access it.

The common crawl Index format is called ZipNum Sharded[41]. Such a format
divides the complete index into several blocks called shards of commonly 3000 CDX
records. These shards are spread over multiple compressed files (part-file). For each of

5https://aws.amazon.com/

56 CHAPTER 6. COMMON CRAWL DATA SET AS SOURCE OF TEST CASES

Figure 6.1: Common crawl index structure. The index is constituted by several second
index files that contains the location of the compressed shards

Shard Record
URL search key
URL timestamp
Part-file index
Offset where the shard begins

Length of shard

com , ao l , d i s c o v e r) / a o l d e s k t o p 9 7 20150529135708 cdx−00015. gz 221669808 211634

Figure 6.2: Format and example of a Shard index record. Extracted from the Common
crawl index.

these part-files exist a shard index that contains necessary data to locate every shard.
The picture 6.1 shows the structure of the ZipNum Sharded CDX format.

Every line in the ”second index” represents a shard. The Figure 6.2 shows the
format and an example.

A CDX record represents a WARC record of the Common crawl data. It contains
the necessary information, i.e. container file, offset and record length, to retrieve the
record. The Figure 6.3 shows the format and an example.

Moreover, as can be seen in the examples shown, the URL field is transformed
to make it easier for lexicographic searching. Common crawl index reverses sub-
domains,e.g. example.com to com,example,)/ to allow for searching by domain, then
sub-domains[40].

6.4. RANDOM SAMPLE ALGORITHM 57

CDX Record
URL search key
URL timestamp
JSON format

Original url
MIME
Response status
Digest
Length in container WARC
Offset where the record begins in container WARC
Filename/key of the container WARC

com , j q u e r y u i , bugs) / t i c k e t /5963 20150529000543 {” u r l ” : ” h t t p : / / bugs . j q u e r y u i . com /
t i c k e t / 5 9 6 3 ” , ”mime ” : ” t e x t / h tml ” , ” s t a t u s ” : ”200” , ” d i g e s t ” : ”
FG5BIQ4YF4PY6734OK6I4DP4LMK6YRTM” , ” l e n g t h ” : ”4532” , ” o f f s e t ” : ”32425753” , ”
f i l e n a m e ” : ”common−c r a w l / c rawl−d a t a / CC−MAIN−2015−22/ segment s / 1 4 3 2 2 0 7 9 2 9 8 0 3 . 6 1 /
warc / CC−MAIN−20150521113209−00328− ip −10−180−206−219. ec2 . i n t e r n a l . warc . gz ”}

Figure 6.3: Format and example of a Common crawl CDX index record. Extracted
from the Common crawl index.

6.4 Random sample algorithm

The Common Crawl Index was used to extract a number of random. Once the sample
of indexes is created, then it is used to retrieve the Common crawl records.

The Listing 6.2 shows how the index sample is built from a Common crawl Index
collection. Starts by randomly distributing the numbers of records to be retrieved per
shard index file. Then for every file, the similar procedure is done assigning how
many records will be retrieved per shard. For example if an index file was assigned
to retrieve 10 records, these 10 records will be randomly distributed to its shards, and
then the records will be taken randomly from the shards. The outcome of the algorithm
is a plain text file with the random index records.

1 SET i =0
2 INIT a l l s h a r d I n d e x F i l e . r e c o r d s T o R e t r i e v e = 0 / / s h a r d i n d e x f i l e s number o f r e c o r d s

t o r e t r i e v e t o z e r o
3 WHILE i <= s a m p l e S i z e
4 SET s h a r d I n d e x F i l e = p i c k a random s h a r d Index f i l e from t h e Index C o l l e c t i o n
5 INCREMENT s h a r d I n d e x F i l e . r e c o r d s T o R e t r i e v e by one
6 INCREMENT i by one
7 ENDWHILE
8 FOR each s h a r d I n d e x F i l e i n i n d e x C o l l e c t i o n
9 SET i =0

10 READ s h a r d s from s h a r d I n d e x F i l e
11 INIT a l l s h a r d . r e c o r d s T o R e t r i e v e = 0 i n s h a r d s
12 WHILE i <= s h a r d I n d e x F i l e . r e c o r d s T o R e t r i e v e
13 SET s h a r d = p i c k a random s h a r d from t h e s h a r d Index f i l e
14 INCREMENT s h a r d . r e c o r d s T o R e t r i e v e by one
15 INCREMENT i by one
16 ENDWHILE
17 FOR each s h a r d i n s h a r d I n d e x F i l e

58 CHAPTER 6. COMMON CRAWL DATA SET AS SOURCE OF TEST CASES

18 SET r e c o r d s = READ random r e c o r d s from s h a r d . The number o f r e c o r d s t o
r e t r i e v e i s t h e v a l u e o f s h a r d . r e c o r d s T o R e t r i e v e .

19 ADD r e c o r d s t o sample
20 END FOR
21 END FOR
22 WRITE sample t o sample . t x t

Listing 6.2: Sampling algorithm

6.4.1 Random Shard Index File

The following describes the method for obtaining a random shard index file from an
Index Collection. Such a method is executed in the line 4 of the Listing 6.2. According
to how the Common crawl Index is built, the number of shard index files is variable.
Therefore the first step is to count the number of shard index files of the collection and
then get a random number between 1 and the total number of files. In the code shown
in Listing 6.3 the structure shardFiles was previously filled with the paths of the shard
files. The number random is a pseudo random generated number between the values
of min and max that is used as a random index for the array structure shardFiles. The
return object is the Path of the shard index file.

Pa th ge tRandomShardF i l e (L i s t s h a r d F i l e s) {
i n t min = 0 ;
i n t max = s h a r d F i l e s . s i z e () − 1 ;
i n t random = min + (i n t) (Math . random () ∗ (max − min +1)) ;
re turn s h a r d F i l e s . g e t (random) ;

}

Listing 6.3: Random shard file selection

6.4.2 Random Shard

What follows is a description of the method for obtaining a random shard from an
Index Collection. Such a method is executed in the line 13 of the Listing 6.2. The
algorithm is similar to Listing 6.3 though the input is a list of the shard offsets of a
Shard index file. This structure is previously filled by reading the Shard index file, as
seen in line 10 of Listing 6.2. The offset is used as key for the shards. The offset is
later used to read the shard index record (Figure 6.2). The Listing 6.4 shows the Java
implementation of the previously described algorithm.

Shard getRandomShard (L i s t s h a r d O f f s e t s , Pa th s h a r d F i l e) {
i n t min = 0 ;

6.4. RANDOM SAMPLE ALGORITHM 59

i n t max = s h a r d O f f s e t s . s i z e () − 1 ;
i n t random = min + (i n t) (Math . random () ∗ (max − min +1)) ;
re turn r e a d S h a r d (s h a r d O f f s e t s . g e t (random) , s h a r d F i l e) ;

}

Listing 6.4: Random shard selection

6.4.3 Random CDX Index records

The extraction of the CDX index records is done after selecting randomly the shards
and the number of index records to retrieve from each. In order to retrieve a random
set of index records from a shard, as seen in line 18 of Listing 6.2, the shard offset and
shard length are used to read a shard in the compressed shard file. These values are
obtained from the shard index record (Figure 6.2). The Listing 6.5 shows the algorithm
to obtain a sample of records from a shard. Observe that the set randomLines is filled
with a random sample of numbers that represent the lines of the shard. Every line is a
CDX index record. And this sample does not repeat records. The Listing 6.6 shows the
algorithm based on the Fisher-Yates shuffle algorithm for sampling a range of numbers
that may represent a number of record. In addition the records are filtered by its mime,
which is the content type. This may return less records than expected for the sample.

SET randomLines wi th a random sample from t h e s e t o f numbers from 1 t o 3000
READ s h a r d from I n d e x F i l e from O f f s e t t o O f f s e t + ShardLeng th
SET l i n e C o u n t e r = 1
FOR each r e c o r d i n s h a r d

IF randomLines c o n t a i n s l i n e C o u n t e r THEN
IF r e c o r d . mime == t e x t / h tml THEN

ADD r e c o r d t o r e c o r d s
END IF

END IF
INCREMENT l i n e C o u n t e r by one

END FOR

Listing 6.5: Random CDX records from a shard.

/ / S i m i l a r t o F i sher−Y a t e s s h u f f l e
p u b l i c s t a t i c I n t e g e r [] s a m p l e I n t e g e r (i n t sampleS ize , i n t maxValue) {

/ / Cr ea t e t h e u n i v e r s e
i n t [] a r r a y = new i n t [maxValue] ;
f o r (i n t i = 0 ; i < maxValue ; i ++) {

a r r a y [i] = i + 1 ;
}

/ / Random t h e s a m p l e S i z e l o c a t i o n s o f t h e a r r a y
Random r = new Random () ;
f o r (i n t i = s a m p l e S i z e − 1 ; i >= 0 ; i−−) {

60 CHAPTER 6. COMMON CRAWL DATA SET AS SOURCE OF TEST CASES

i n t i n d e x = r . n e x t I n t (a r r a y . l e n g t h) ; / / random p o s i t i o n o f a l l
t h e a r r a y

/ / swap
i n t tmp = a r r a y [i n d e x] ; / / save t h e random p o s i t i o n v a l u e
a r r a y [i n d e x] = a r r a y [i] ; / / swap t h e v a l u e s
a r r a y [i] = tmp ;

}

/ / Cut t h e sample l o c a t i o n s o n l y
I n t e g e r [] sample = new I n t e g e r [s a m p l e S i z e] ;
f o r (i n t i = 0 ; i < s a m p l e S i z e ; i ++) {

sample [i] = a r r a y [i] ;
}

re turn sample ;
}

Listing 6.6: Sample from a range of numbers. Used for sampling CDX records from a
Shard.

6.5 Sampling method

The purpose of this section is to describe the method followed to obtain a sample from
the Common Crawl data set. Currently, the process only allows to obtain a sample of
a monthly collection. The Figure 6.4 shows an overview of this method.

The following details the procedure with reference to the Common crawl data set of
May 2015 (CC-MAIN-2015-22), therefore some numbers may differ if the procedure
is executed with another collection. Both sampling and WARC building processes
were run on a Amazon EC2 instance to improve the speed by taking advantage of the
data transfer speed between S3 and EC2 Amazon infrastructures. An Amazon Web
Services account is required in order to access to the Common crawl Index and create
the sample.

The language used to develop the necessary tools for sampling the Common crawl
is Java. The reason is that IIPC provides a library called Web Archive Commons for
processing compressed WARC files. The AWS SDK6 was also used to access, read
and retrieve data from amazon S3.

The first step was to download the set of shard index files from the Common Crawl
Index. There are 300 files with a total size of 81.3 MB. In which are distributed 671970
shards with approximately 3000 records each. Thus this collection of Common Crawl

6https://aws.amazon.com/es/tools/

https://aws.amazon.com/es/tools/

6.5. SAMPLING METHOD 61

Figure 6.4: Sampling method. The sample of indexes is created first. Then the WARC
file is built.

Index and therefore Common crawl data set have approximately 2,91 billion records.

The second step is to sample the Common crawl index as described in section
6.3. A Java tool was developed to generate a CDX file containing the sample. This
software receives as input data the sample size, the location of the shard index files pre-
viously downloaded and the S3 key of the compressed shards. Additionally it requires
a file profileConfigFile.properties which contains the AWS user account credentials for
accessing to the Common crawl Index. The Figure 6.5 shows part of the sample file.

The third step is the building of the WARC file. As part of the Java tool, a service
was developed to build a compressed WARC file. The input is the previously generated
index CDX file and the file name of the output WARC. Each CDX record of the CDX
file contains the key, offset and content length, as seen in Figure 6.3, data necessary to
retrieve the record from the Common crawl data set. All records from the sample are
retrieved and written in a new WARC file.

It was decided to separate the generation of the sample and the WARC building to
let modify the index sample according to what is required. For example, to filter even
more the data by top level domain or domain.

A Java application was developed to provide the above services:

62 CHAPTER 6. COMMON CRAWL DATA SET AS SOURCE OF TEST CASES

Figure 6.5: Cut of a sample CDX File.

• Create a Common crawl index sample.

• Build a WARC file.

• Parser Runner.

Additionally to creating a sample and building a WARC file services, a parse
WARC file service was developed to run an specific parser in order to parse every
document within a WARC file and copy the results to the file system by following the
structure shown in Figure 4.3. Once the output files were generated for each parser,
then the comparator can be run.

The arguments required are:

1. Parse name. Required to identify the parser output in the Comparator tool.

2. Command to run the parser. The parser runner use this command to run the
parser as in command line.

3. The path of the WARC filename.

The parse WARC file reads every HTML document within the WARC file and ex-
ecutes the parser with the command provided. The output of the parser is then written
in file system. The HTML documents extracted from the WARC file is temporarily
written in file system. Therefore the command in arguments must be the one for pars-
ing a file, e.g. java -jar validatorNuAdapter.jar -f.

A Common crawl record may have an empty HTML document, as a result of the re-
sponse from an URL. For example the URL http://www.utexas.edu/opa/blogs/

research/2008/11/26/engineering-professor-gets-wired/feed/ returns an empty

http://www.utexas.edu/opa/blogs/research/2008/11/26/engineering-professor-gets-wired/feed/
http://www.utexas.edu/opa/blogs/research/2008/11/26/engineering-professor-gets-wired/feed/

6.6. SUMMARY 63

document. Even if a empty document is a valid test case, it was decided to filter these
occurrences in the WARC parsing process to avoid test duplication and test this sce-
nario independently.

6.6 Summary

This chapter began by describing what is Common Crawl and how their data is stored
in Amazon S3. Similarly, a description of Common Crawl Index was given. This index
was useful for sampling Common Crawl data. Then, the Chapter went on to describe
the procedures and methods used to retrieve the Common Crawl data and create a
sample resulting in a WARC file. Such WARC file is used in the experiments shown
in the following Chapter.

Chapter 7

Test framework execution

This chapter describes and discusses the experiments carried out in this investigation
with the methods and test framework described in chapters 4 and 6.

The experiment consists in a description of how the test framework was executed,
the results, the level of convergence and a discussion. In the results, a passed test
means that the parser is part of the plurality, whereas a failed test means the opposite.
Finally, the results, issues and limitations are discussed.

The experiments are presented in the order they were executed. Experiments from
1 to 4 were performed with data from the Common Crawl Collection May 2015.
Then, experiment 5 used the HTML5Lib test cases as input data. Finally, though it
was not planned, a last experiment with Common Crawl data from the Collection July
2015 was performed to compare and validate the results of the first sample.

Following is shown the list of the parsers included in these experiments. Note that
the parser with name MScParser is the parser developed in this project.

• parse5 version 1.4.2.

• html5lib version 0.999999/1.0b7.

• validatorNU version 1.4.

• anglesharp version 0.9.0. Included after experiment 4.

• jsoup versions 1.8.2 included in experiments until experiment 3, then replaced
to version 1.8.3.

• MSc Parser

64

7.1. COMMON CRAWL SAMPLE FROM MAY 2015 65

Figure 7.1: Number of passed and failed tests per parser in experiment 1

7.1 Common crawl sample from May 2015

This section describes the several experiments performed with data obtained from the
Common crawl data set from May 2015. The online sample size calculator from Cre-
ative research Systems 1 was used to calculate the confidence interval (or margin of
error) and confidence level for a given sample size.

7.1.1 Experiment 1

Setting

A initial sample size of 2000 index records was taken from the Common crawl index
of May 2015 (CC-MAIN-2015-22). After removing empty HTML documents, the
resulting size was 1982 documents.

Results

The Figure 7.1 shows the results of this first experiment. Only in 44 test cases the
identical output was produced by all parsers. Furthermore, Jsoup shows a very low of
passed tests, whereas parse5 appear as the more successful.

The Figure 7.2 shows the compliance level of each parser in this experiment. This
level is an indicator of how likely a parser output will converge with other parsers
output. For example, the interpretation for the parse5 parser has a probability of 88.7%
that its output converge with the other parsers whereas Jsoup has a probability of 4.5%.
This result is with reference to the Common Crawl data of May 2015 with a margin

1http://www.surveysystem.com/sscalc.htm

http://www.surveysystem.com/sscalc.htm

66 CHAPTER 7. TEST FRAMEWORK EXECUTION

Figure 7.2: Convergence level in experiment 1

error of 2.2 and confidence level of 95%. Finally, the most surprising aspect of the
data is the low level of Jsoup compared with the others, considering that it claims to
be compliant with WHATWG.

Discussion

The unexpected high level of disagreement indicated a possible weakness in the test
framework. By reviewing the differences in the outputs, it was found that the adapters
had the following issues:

1. Some characters were not being displayed properly because the encoding UTF-8
was not correctly defined in the adapters.

2. The adapter of our parser was removing an extra line in the end of the file, caus-
ing a single difference in several files.

3. The parse5 adapter was serialising only one percentage character when the DOM
tree had two percentage characters (%%). The reason was the incorrect use of
the function console.log() in javascript. The right solution is to specify the type
of variable, e.g. (’%s’,domTree).

7.1.2 Experiment 2

Setting

The same input of 1982 documents of the previous experiment was used. However, the
issues in the adapters were fixed.

7.1. COMMON CRAWL SAMPLE FROM MAY 2015 67

Figure 7.3: Number of passed and failed tests per parser in experiment 2

Figure 7.4: Convergence level in experiment 2

Results

From the data in Figure 7.3, it can be seen that the unanimous agreement increased
compared with the previous experiment with a total 70 equal outputs. However, this
number remains low because of the results of Jsoup. Furthermore, parse5 and html5lib

have almost the same number of passed tests, followed by the pair of validatorNU and
MScParser. Jsoup remains with almost the same results as the previous experiment.

From the chart 7.4, it can be seen that both parse5 and validatorNU levels prac-
tically converges with a probability of 99.0% and 98.9% respectively . validatorNU

and MScParser shows an significant increment compared to the previous experiment
whereas Jsoup rose slightly.

68 CHAPTER 7. TEST FRAMEWORK EXECUTION

Discussion

Although a noticeable increase in convergence was obtained overall, the expected re-
sults were not obtained. After the manual revision of the differences, it was found that
Jsoup was having the same issue with the extra line missing at the end of the output.
Furthermore, according to the W3c specification a leading ”U+FEFF BYTE ORDER
MARK” character must be ignored [6].html5lib and MScParser failed in removing the
character in tests that had such character. This finding may indicate a missing test in
the HTML5Lib test suite.

Once the code of MScParser was revised, it was found that it was missing the
instruction to ignore the ”U+FEFF BYTE ORDER MARK” character. On the other
hand html5lib probably has this compliance issue.

7.1.3 Experiment 3

Setting

In this experiment the MScParser issue related to leading ”U+FEFF BYTE ORDER
MARK” character was fixed. Furthermore the new Jsoup version 1.8.3 was released
and added to the test. It was decided to leave the old version 1.8.2 to compare results.
Additionally the Jsoup adapter issue with extra lines was fixed.

Results

As it can be seen in Figure 7.5, both Jsoup versions had an identical result, maintaining
a low agreement in relation to the other parsers. On the other hand, the data shows a
decrease on agreements among the parsers compared with the previous experiment.

The chart 7.6 shows that parse5, validatorNU and html5lib levels decreased slightly
whereas MScParser and both Jsoup versions presented the opposite behaviour.

Discussion

The most surprising aspect of the result is the identical output of both versions of
Jsoup. It was expected that the new version had fixed compliance issues, however the
same behaviour is shown as the old version. An error in the experiment could be the
reason, though it was found nothing. However, it was found that both Jar files have
the same size. Moreover, an online Maven repository reports the same size in both

7.1. COMMON CRAWL SAMPLE FROM MAY 2015 69

Figure 7.5: Number of passed and failed tests per parser in experiment 3

Figure 7.6: Convergence level in experiment 3

70 CHAPTER 7. TEST FRAMEWORK EXECUTION

Figure 7.7: Number of passed and failed tests per parser in experiment 4

versions23.

Additionally, as a result of having two parsers that completely converge, the other
parsers results are affected. The reason is that it can decrease the possibility to have a
plurality, and as a consequence a passed test. For example, when parse5 and valida-

torNU agreed and the two Jsoup versions agreed, then no plurality is given.

7.1.4 Experiment 4

Setting

Jsoup 1.8.2 version was removed and AngleSharp parser was added to this experiment.

Results

From the data in Figure 7.7, it can be seen that parse5 and validatorNU almost passed
all tests, failing only 4 each. html5lib and Jsoup had the same results as the previous
experiment.MScParser increased the number of passed tests by only one, practically
maintaining the same results. On the other hand, AngleSharp showed a very similar
result as MScParser, and consequently not to distant from html5lib numbers. This can
be better appreciated in chart 7.8. Additionally, from this chart, it can be seen that
parse5 and validatorNU have almost a 100% probability of convergence.

2http://mvnrepository.com/artifact/org.jsoup/jsoup/1.8.2
3http://mvnrepository.com/artifact/org.jsoup/jsoup/1.8.3

7.2. HTML5LIB TEST SUITE 71

Figure 7.8: Convergence level in experiment 4

Discussion

The increment in parse5 and validatorNU convergence level is the result of removing
Jsoup 1.8.2 version. This allowed parse5 and validatorNU to become plurality. On the
other hand, the inclusion of AngleSharp did not change the parsers results in relation to
the previous experiment, indicating that html5lib, MScParser and AngleSharp do not
share the same test outputs. Otherwise, a plurality would have been found and their
levels would have been increased.

7.2 HTML5Lib test suite

After processing a Common Crawl sample and reviewing the disagreements, it was
found that most of them were because of specification differences while others were
truly compliance bugs. However, the majority of these bugs should not occur if the
parser passes the HTML5Lib test suite. This led to use the HTML5Lib input test cases
in the test framework and identify those cases where the parsers are failing. Therefore,
we will know which failing test cases shown in previous experiments are not included
in the HTML5Lib test suite.

7.2.1 Experiment 5

Setting

In this experiment the current HTML5lib test suite was the input. The tests were
extracted from the current versions of the HTML5suite tree constructor tests. Addi-
tionally, the cases for testing the scenarios with script flag set in false and document

72 CHAPTER 7. TEST FRAMEWORK EXECUTION

(a) Excluding correct output

(b) Including correct output

Figure 7.9: Number of passed and failed tests per parser in experiment 5

fragment were filtered leaving a total of 1383 tests. Moreover, a second experiment
was reproduced including the correct output as the correct parser in the comparison.

The scripting flag set in false related tests were filtered because the adapters are
configured to parse with scripting flag set in true as explained in subsection 4.1.2. On
the other hand document fragment tests are beyond the scope of this dissertation.

Results

The Figure 7.9 shows the results of the testing with the HTML5lib test cases, with
and without the correct output. The inclusion of the correct outputs resulted in more
tests passed for every parser but html5lib. Interestingly, the correct outputs shows three
failed tests.

By comparing the charts in Figure 7.10, it can be seen that the levels of convergence
barely differ. MScParser and validatorNU shows the most positive result followed

7.2. HTML5LIB TEST SUITE 73

(a) Excluding correct output

(b) Including correct output

Figure 7.10: Convergence level in experiment 5

closely by parse5. On the other hand Jsoup highlights with a low level compared with
the other parsers.

Discussion

Overall all parsers showed a high level of convergence and positive results, with the
exception of jsoup. These results may prove that jsoup has a low compliance with the
WHATWG specification. A possible explanation to this results is that jsoup does not
use the HTML5Lib test suite in their testing (see Table 5.1). To support this statement,
jsoup currently has 148 bugs open, in which several appear to be related to unexpected
parsing outputs[42].

The inclusion of the correct outputs in the test led to improve the level of agreement
among the parsers. The reason may be that the correct output helped as a tiebreaker in
cases where there were not plurality.

On the other hand, it is interesting to note that the correct results does not have a
100% of convergence. After manually revising the test results, it was found that the

74 CHAPTER 7. TEST FRAMEWORK EXECUTION

Figure 7.11: Number of passed and failed tests per parser in experiment 4

three failed test cases validate the adjust SVG attributes part of the specification, and
that only validatorNU had the same result than the correct result (see Figure 7.11).
This result may be explained by the fact that the adjust SVG attributes part differs
between specifications, i.e. AngleSharp and MScParser follows W3C specification;
and that some parsers may have not implemented this part yet, i.e. due to the ”living
standard” property and constant evolution of WHATWG specification. Moreover, this
example shows the case when correct or compliant results fail called common-mode

failure, a limitation of this testing strategy.

7.3 Common crawl sample from July 2015

The following experiment was not planned, however, it was executed in order to com-
pare and validate the results of the experiment 4 (7.1.4).

7.3.1 Experiment 6

Setting

Similar to experiment 4, a sample was taken from Common Crawl but from the Col-
lection July 2015.

7.3. COMMON CRAWL SAMPLE FROM JULY 2015 75

Figure 7.12: Number of passed and failed tests per parser in experiment 6

Figure 7.13: Convergence level in experiment 6

Results

From the Figures 7.12 and 7.13, it can be seen that compared to experiment 4, the re-
sults are almost equivalent to each other. parse5, validatorNU and AngleSharp passed
tests slightly increased whereas html5lib, MScParser and Jsoup slightly decreased.

Discussion

The similar results between experiment 4 and 6, may suggest that the samples are
uniformly distributed, and that they are a good representation of the whole Common
Crawl data.

76 CHAPTER 7. TEST FRAMEWORK EXECUTION

7.4 Summary

This chapter has described how the experiments with the test framework were per-
formed. In addition, results and issues presented were discussed, however, the discus-
sion of main findings found in these experiments are provided in more detail the next
chapter.

Chapter 8

Results and discussion

8.1 MScParser evaluation

Additionally to the results obtained in the testing framework which shows a good com-
pliance level with reference to W3C, The Figure 8.1 and Figure 8.2 shows the test re-
sults against the HTML5Lib test suite. HTML5Lib test suite is based on WHATWG
specification whereas the parser is compliant with W3C specification, therefore sev-
eral tests failed because of specification differences. These differences are shown in
the following section.

The results show a fully W3C compliant parser according to the HTML5Lib test
suite, built approximately in 6 weeks by three MSc. students. The Appendix A shows
the estimated effort. The faster development is because of the requirement was only to
be compliant with the specification, excluding other non functional requirements, e.g.
performance or security.

The objective of building a functional HTML5 specification based parser was suc-
cessfully met without major issues, thus it can be concluded that the specifications are
reasonably understandable for any person with basic programming knowledge.

Figure 8.1: Tokenizer test results. The failed test is because of specification difference.

77

78 CHAPTER 8. RESULTS AND DISCUSSION

Figure 8.2: Tree constructor test results. The failed tests are because of specification
differences.

8.2 Differences between W3C and WHATWG specifi-
cations

This section shows a compilation of differences found between W3C and WHATWG
specifications as a result of the failed HTML5Lib tests of MScParser. These differ-
ences influenced directly the results of the experiments done with the test framework.

At the moment of writing this dissertation the current W3C specification was re-
leased the 28th October 2014 whereas the WHATWG last update was the 21th July
2015. The differences between the Parsing HTML documents sections of the specifi-
cations are:

1. In Preprocessing the input stream section, WHATWG have Any LF character

that immediately follows a CR character must be ignored, and all CR characters

must then be converted to LF characters whereas W3C have All CR characters

must be converted to LF characters, and any LF characters that immediately

follow a CR character must be ignored.

2. In The stack of open elements section, WHATWG categorizes the menu ele-
ment as a special whereas W3C does not.

3. In The in body insertion mode section, WHATWG provides rules for process-
ing the menu start tag token whereas W3C does not.

4. In The in body insertion mode section, WHATWG provides rules for process-
ing the menu end tag token whereas W3C does not.

5. In The rules for parsing tokens in foreign content section, WHATWG pro-
vides rules for processing the menu start tag token whereas W3C does not.

8.3. LEVEL OF AGREEMENT ACROSS PARSERS 79

6. In The stack of open elements section, WHATWG categorizes the menuitem

element as a special whereas W3C does not.

7. In The in body insertion mode section, WHATWG provides rules for process-
ing the menuitem start tag token whereas W3C does not.

8. In The rules for parsing tokens in foreign content section, W3C provides rules
for processing the main start tag token whereas WHATWG does not.

9. In Closing elements that have implied end tags W3C provides rules for pro-
cessing the main element whereas WHATWG does not.

10. In The in body insertion mode section, when processing a body or html end tag
token, an rtc element in the stack of open elements could produce a parse error
in W3C whereas in WHATWG is not mentioned.

11. In The in body insertion mode section, when processing a rt start tag token,
W3C mentions the rtc element whereas WHATWG does not.

12. The Adoption agency algorithm differs between the specifications.

13. In Creating and inserting nodes section, the tables displayed for adjust SVG

attributes instruction are different.

8.3 Level of agreement across parsers

According to the results obtained from the experiment 4 and 6, the Table 8.1 shows the
probability of convergence with reference to common crawl data set of May 2015 with
a margin error of 2.2 and a confidence level of 95%; and July 2015 with a margin error
of 3 and a confidence level of 95%.

Similarly, the Table 8.2 shows the probability with reference to the HTML5Lib test
suite.

In both tables, validatorNU has a higher probability to converge with another
parsers whereas Jsoup has the lowest. Contrary to expectations, MScParser shows a
notable contrast between Common crawl and HTML5lib test suite results. A possible
explanation for this contrast is that HTML5lib test cases are small HTML documents
designed to test an specific section of the specification whereas Common crawl docu-
ments are real web pages. The latter may represent a more complex test case that test

80 CHAPTER 8. RESULTS AND DISCUSSION

Parser Probability Exp. 4(%) Probability Exp. 6(%)
validatorNU 99.8 99.9
parser5 99.8 99.9
html5lib 82.0 79.0
MScParser 79.1 77.6
AngleSharp 78.0 79.1
Jsoup 4.9 4.3

Table 8.1: Probability of convergence with reference to Common crawl data set of may
2015. Ordered from highest to lowest.

Parser Probability (%)
validatorNU 99.0
MScParser 99.0
parser5 98.8
html5lib 91.2
AngleSharp 89.4
Jsoup 67.5

Table 8.2: Probability of convergence with reference to HTML5Lib test suite. Ordered
from highest to lowest.

several sections of the specification. MScParser was developed specifically to follow
the W3C specification and pass the HTML5lib tests (those applicable to W3C specifi-
cation), therefore it showed better results with isolated tests than with real web pages.

validatorNU and parse5 were the two parses with more agreements. This may be
the result of having five parsers that implemented the WHATWG specification, thus
increasing the probability to converge.

On the other hand MScParser and AngleSharp shows similar results, because they
are implementations of W3C specification. The lower level may be because, in case of
a dispute result of specification differences, the plurality would be given to WHATWG
implementations. This results in a failed test for W3C implementations. Further work
is required to compare separately these two groups to ensure better results.

It is somewhat surprising that html5lib does not have a higher convergence, taking
into account that the same developers maintain the HTML5Lib test suite. It is difficult
to explain this result, but it might be related to a faulty adapter.

Finally Jsoup shows a poor level of convergence. As discussed in 7.2.1, Jsoup

appears to have a low compliance with the WHATWG specification due to the lack
of HTML5Lib test suite in their testing and high number of current bugs. However, a
faulty adapter might be also a cause.

8.4. DISAGREEMENTS ANALYSIS 81

8.4 Disagreements analysis

Overall, it was found that the main reason of the disagreements among parsers evalu-
ated was because of specification differences described in the previous section. Only
the compliance bugs found of the parsers with more convergence will be discussed.
These are validatorNU and parse5. This is because it takes a considerable amount of
time to identify the failed tests that are not caused because of specification differences.
Thus, developers are encouraged to test their parser against the HTML5Lib test suite
and analyse the results.

As an observation, parse5, html5lib and jsoup do not allow parsing with a scripting
flag set to false. Although this behaviour was not included in the testing, this is a
compliance error.

validatorNU

As discussed in experiment 5 (Subsection 7.2.1) validatorNU showed three disagree-
ments related to SVG attributes because of a common-mode failure. However, valida-

torNU is compliant with WHATWG specification whereas AngleSharp and MScParser

are to W3C. Nevertheless, this is a compliance bug for parse5, html5lib and jsoup.

Two other cases of common-mode failures was presented in one of the test cases of
Common Crawl. The first case consists in a line feed character right after a textarea

start tag. The before inside a table scope. There were no plurality because of a tie be-
tween validatorNU and parse5 result; and html5lib and MScParser result. She second
case is pretty similar, but with a pre start tag instead of textarea. See Appendix section
E.2.

Additionally, there was one test case that validatorNU failed because of its large
size: 889.7kb. The parse WARC file service (see Subsection 6.5) returned a timeout
error resulting in a failed test. This timeout error was designed to avoid halting the
process, e.g. if the parser has an infinite loop.

The following compliance bugs were found in validatorNU:

1. Fail to return a U+FFFD REPLACEMENT CHARACTER from next input
FOO�. This bug is also presented in desktop browser Mozilla
Firefox 40.0.3. See Appendix section F.1.

2. Fail handling menuitem according to WHATWG specification. However, this
is compliant with W3C. Additionally, this bug is presented in desktop browsers

82 CHAPTER 8. RESULTS AND DISCUSSION

Mozilla Firefox 40.0.3 as well as in Google Chrome 45.0.5454.85 See Appendix
section F.2.

3. It adds an extra character & after a malformed comment with a character refer-
ence inside. This bug could not be reproduced in Mozilla Firefox 40.0.3. See
Appendix section F.3.

parse5

Experiment 5 7.2.1 showed that parse5 fails to pass tests related to ruby element and
children as well as parse correctly text in an ordinary1 element.

On the other hand, in the experiment 4 (Subsection 7.1.4), parse5 failed two tests
because of the same reason as validatorNU with common-mode failures cases.

The following compliance bugs were found in parse5:

1. parse5 stop working and shows the error RangeError: Maximum call stack

size exceeded when parsing <button><p><button>. See Appendix section
G.1.

2. A strange case found in the Common Crawl sample makes parse5 moves Car-
riage Return and Line feed characters before a table element, instead of leaving
them inside table scope. See Appendix section G.2.

8.5 HTML5Lib Missing tests

A missing test is that test case in which two parsers that passed the HTML5Lib test
suite do not produce the same result. The following list shows possible missing tests
for HTML5Lib test suite as a result of the analysis of results obtained in this study.

1. A leading U+FEFF BYTE ORDER MARK must be ignored if present, as de-
scribed in the preprocessing 2 section of the specification.

2. A Line Feed character(LF) that is next to the textarea inside a table scope must
be ignored if present, as described in The ”in body” insertion mode 3 section.

3. A Line Feed character(LF) that is next to the pre inside a table scope must be
ignored if present, as described in The ”in body” insertion mode section.

1http://www.w3.org/TR/html5/syntax.html#ordinary
2https://html.spec.whatwg.org/multipage/syntax.html#preprocessing-the-input-stream
3http://www.w3.org/TR/html5/syntax.html#parsing-main-inbody

http://www.w3.org/TR/html5/syntax.html#ordinary
https://html.spec.whatwg.org/multipage/syntax.html#preprocessing-the-input-stream
http://www.w3.org/TR/html5/syntax.html#parsing-main-inbody

8.6. SPECIFICATION BUGS 83

8.6 Specification bugs

A specification bug is the case in which two parsers that passed that are specification
compliance, that is that both follows the specification rules, do not produce the same
result. This suggests a hole or bug in the specification. However, this study did not
found any case.

8.7 Summary

This chapter has reviewed the key findings of the experiments shown in previous chap-
ter. It showed the level of agreement among parsers and thus an approximation of how
compliant they are. Furthermore, the results of the parser implemented in this project
proved to be compliant with the W3C specification. Moreover, it was useful for finding
the differences between specifications. Such differences between specifications were
the main reasons for disagreements among the parsers. Finally, the missing tests for
the HTML5Lib test suite were listed, and no specification bug was found.

The conclusion of this dissertation is presented in the next chapter.

Chapter 9

Conclusions

The purpose of this study was to determine the level of compliance of HTML5 parsers
by developing a testing framework based on N-version diversity. Moreover, to validate
whether the HTML5lib test suite is enough to guarantee consistent behaviour i.e. to
confirm if a parser that passes the HTML5 test suite is specification compliant. Prior
to commencing these activities, a parser was developed in order to understand the
specification and to know the implications involved.

It was expected that the test framework could find bugs and compliance errors in
the parsers, and test cases that are not covered by the HTML5Lib test suite and possibly
cases that are not covered by the HTML5 specification.

This study has shown that the HTML5 specification is reasonably understandable
because the team managed to develop a full compliant parser without major problems
within a reasonable amount of time. Furthermore, HTML5Lib test suite exposed those
parts of the specification previously misinterpreted by the team.

The research has also shown that in general, that the parsers evaluated show a high
convergence with the exception of Jsoup. The main reason for disagreements between
parsers is the differences between specifications. This is interesting because the aim of
the specifications is to ensure interoperability among software that use HTML technol-
ogy. However, by having two different versions, it is difficult to achieve this objective.
If the goal of an HTML5 parser developer is to converge as much as possible with
other parsers, then, according to the results and parser survey obtained in this study, it
is recommended to follow the WHATWG specification.

According to the experiments performed, it was confirmed that HTML5Lib test
suite is a valuable source of test cases to ensure a high level of compliance with ref-
erence to the WHATWG specification. Although there were a few missing test cases

84

9.1. LIMITATIONS 85

(Appendix E), the results show an extensive coverage of the test suite with reference
to the WHATWG specification.

Regarding the parsers evaluated, the findings obtained from experiments suggest
that in general validatorNU and parse5 are the most compliant with the WHATWG
specification. Whereas MScParser and AngleSharp to W3C. On the other hand, html5lib

and Jsoup showed an acceptable and poor compliance respectively.

Additionally, the test framework showed that it is a useful tool for testing and
revealing compliance violations in HTML5 parsers. The study proved that the test
framework can be useful for finding errors not covered by HTML5Lib test suite (Sec-
tion 8.4). Nevertheless, it is suggested to test against the HTML5Lib suite first. This
may be a helpful tool for the test harness of HTML5 parser developers in order to en-
sure the best parser quality. On the other hand, no HTML5 specification issue or bug
was found, which suggests that the specification is very robust.

9.1 Limitations

The major limitation of this testing approach is the common-mode failures with regards
to N-Version Diverse Systems. This may produce incorrect results as shown with
adjust SVG attributes in 7.2.1 where only validatorNU is compliant. However, the
testing framework reports the opposite.

A significant weakness of this study was the lack of testing for adapters. As it
can be seen throughout the development of the experiments, some difficulties with
the adapters were encountered, generating wrong results. This can be avoided with
properly conducted testing of adapters. This would be a fruitful area for further work.

The scope of this study was not fully complete in terms of the specification cover-
age. Parser behaviours like script execution or identification of encoding are not tested
in the method presented. These form part of the specification, however not all parsers
implement these features.

Another limitation faced is that the Common crawl data set may be biased. There
is no conclusive information that explains the crawling process as explained in Chapter
6.

The final limitation encountered with the testing framework concerns the storing of
output files and differences between output files. Once the comparator processes the
output files, it generates the report and files. These files contain only the differences,
deleting original output files. This limits the addition of new output files, e.g. in the

86 CHAPTER 9. CONCLUSIONS

case of adding a new parser, it is necessary to restore original files from previously
evaluated parsers in order to compare them.

The team also faced a significant challenge of teamwork. There were notable com-
munication problems and team issues. Lack of trust was another reason why team-
work was difficult. Unfortunately, one of the members decided to work individually
and ceased attending the weekly meetings. Otherwise the test framework would have
had more parsers evaluated. Notwithstanding these challenges, the team successfully
achieved the defined objectives of the project. Furthermore, the overall work carried
out and results achieved may contribute to the HTML5 community.

9.2 Future work

Further work should be carried out mainly to overcome the limitations of the test
framework developed in this project. Such further work may include enhancement of
the comparison process. That is, to allow addition of a new parser without generating
or restoring the original outputs of parsers previously tested.

It is recommended that further research be undertaken to test decoding and script
execution behaviours. Parsers in evaluation would need to have these features imple-
mented. It would be interesting to test the tree reconstruction caused by an script, as
well of change in encoding while parsing.

Another possible area of future research could be to execute the experiments by
grouping parsers per specification. This would result in greater convergence. Although
it requires the installation of more parsers, as well as the development of their corre-
sponding adapters.

This study should be repeated using different sources of test cases. It is suggested
to obtain samples from other Common crawl collections or for instance from Alexa
top websites1. In addition, filters could be implemented in the Common crawl sam-
pling method to sample only those test cases with characteristics that are of interest
to the research. The test cases could also be generated by developing a random input
generator.

Finally, it is highly recommended to use this test framework to test browser based
parsers in order to identify any disagreements among them. From research, it was
found that there exists a high level of complexity to achieve complete installation and
setup of browser engines. As a result of this complexity, such browser parsers were not

1http://www.alexa.com/topsites

9.2. FUTURE WORK 87

utilized (installed) during the course of this project. Finding a disagreement using the
test framework on such browser parsers will be a valuable contribution to the HTML
and Web communities, which will help achieve the goal of interoperability.

Bibliography

[1] C. Anaya, Analysing and testing HTML5 parsers. M.s. thesis in submission,
University of Manchester, 2015.

[2] Ian Hickson, “Error handling and Web language design.” http://ln.hixie.

ch/?start=1074730185, 2004. Accessed: 2015-04-24.

[3] J. Graham and G. Sneddon, “html5lib-tests.” https://github.com/html5lib/
html5lib-tests.

[4] Y. Minamide and S. Mori, “Reachability analysis of the html5 parser specifica-
tion and its application to compatibility testing,” in FM 2012: Formal Methods

(D. Giannakopoulou and D. Mry, eds.), vol. 7436 of Lecture Notes in Computer

Science, pp. 293–307, Springer Berlin Heidelberg, 2012.

[5] L. I. Manolache and D. G. Kourie, “Software testing using model programs,”
Software - Practice and Experience, vol. 31, no. February, pp. 1211–1236, 2001.

[6] HTML5: A vocabulary and associated APIs for HTML and XHTML, W3C Rec-
ommendation, 28 October 2014.

[7] W3C, “HTML, The Webs Core Language.” http://www.w3.org/html/. Ac-
cessed: 2015-03-08.

[8] W3C, “Facts about W3C.” http://www.w3.org/Consortium/facts#

history. Accessed: 2015-04-23.

[9] W3C, “HTML, History.” http://www.w3.org/TR/html5/introduction.

html#history-0. Accessed: 2015-04-23.

[10] L. Stevens and R. Owen, The Truth About HTML5. Berkeley, CA: Apress, 2014.

88

http://ln.hixie.ch/?start=1074730185
http://ln.hixie.ch/?start=1074730185
https://github.com/html5lib/html5lib-tests
https://github.com/html5lib/html5lib-tests
http://www.w3.org/html/
http://www.w3.org/Consortium/facts#history
http://www.w3.org/Consortium/facts#history
http://www.w3.org/TR/html5/introduction.html#history-0
http://www.w3.org/TR/html5/introduction.html#history-0

BIBLIOGRAPHY 89

[11] W3C, “DraconianErrorHandling.” http://www.w3.org/html/wg/wiki/

DraconianErrorHandling, 1998.

[12] WHATWGWiki, “FAQ HTML.” https://wiki.whatwg.org/wiki/FAQ, 2015.
Accessed: 2015-04-22.

[13] T. Bray, “DraconianErrorHandling.” https://xml.web.cern.ch/XML/www.

xml.com/axml/notes/Draconian.html, 2010.

[14] Ian Hickson, “HTML5 defines error handling.” http://markmail.org/

message/p5lkz5wrqh7loat3, 2006. Accessed: 2015-04-24.

[15] Extensible Markup Language (XML), W3C Recommendation, 1.0 (Fifth Edition)
2008.

[16] W3C, “W3C Document Object Model.” http://www.w3.org/DOM/#what. Ac-
cessed: 2015-08-06.

[17] The Unicode Standard, Version 7.0.0, 2014.

[18] D. author Grune, Parsing Techniques A Practical Guide / by Dick Grune, Ceriel

J. H. Jacobs. New York, NY : Springer New York,, 2008.

[19] P. Borba, A. Cavalcanti, A. Sampaio, and J. Woodcook, eds., Testing Techniques

in Software Engineering, vol. 6153 of Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010.

[20] W. standards project, “Acid Tests.” http://www.webstandards.org/action/

acid3/. Accessed: 2015-04-26.

[21] HTML5Test, “HTML5Test.” https://html5test.com/index.html. Ac-
cessed: 2015-04-27.

[22] “cl-html5-parser — Quickdocs.” http://quickdocs.org/

cl-html5-parser/. Accessed: 2015-04-27.

[23] “Dev.Opera Ragnarök Viking Browser With HTML5 Parser!.” https://dev.

opera.com/blog/ragnarok-viking-browser-with-html5-parser/. Ac-
cessed: 2015-04-27.

[24] E. Seidel, “The HTML5 Parsing Algorithm.” https://www.webkit.org/blog/
1273/the-html5-parsing-algorithm/, 2010. Accessed: 2015-04-27.

http://www.w3.org/html/wg/wiki/DraconianErrorHandling
http://www.w3.org/html/wg/wiki/DraconianErrorHandling
https://wiki.whatwg.org/wiki/FAQ
https://xml.web.cern.ch/XML/www.xml.com/axml/notes/Draconian.html
https://xml.web.cern.ch/XML/www.xml.com/axml/notes/Draconian.html
http://markmail.org/message/p5lkz5wrqh7loat3
http://markmail.org/message/p5lkz5wrqh7loat3
http://www.w3.org/DOM/#what
http://www.webstandards.org/action/acid3/
http://www.webstandards.org/action/acid3/
https://html5test.com/index.html
http://quickdocs.org/cl-html5-parser/
http://quickdocs.org/cl-html5-parser/
https://dev.opera.com/blog/ragnarok-viking-browser-with-html5-parser/
https://dev.opera.com/blog/ragnarok-viking-browser-with-html5-parser/
https://www.webkit.org/blog/1273/the-html5-parsing-algorithm/
https://www.webkit.org/blog/1273/the-html5-parsing-algorithm/

90 BIBLIOGRAPHY

[25] WHATWG Wiki, “Parser tests.” https://wiki.whatwg.org/wiki/Parser_

tests, 2013. Accessed: 2015-04-27.

[26] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” p. 38, Aug.
2012.

[27] S. R. Shahamiri, W. M. N. W. Kadir, and S. Z. Mohd-Hashim, “A Comparative
Study on Automated Software Test Oracle Methods,” in 2009 Fourth Interna-

tional Conference on Software Engineering Advances, pp. 140–145, IEEE, Sept.
2009.

[28] M. Last and M. Freidman, “Black-box testing with info-fuzzy networks,” Artifi-

cial Intelligence Methods in Software Testing, World Scientific, pp. 21–50, 2004.

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design patterns: elements of
reusable object-oriented software,” Jan. 1995.

[30] B. Parhami, “Voting algorithms,” Reliability, IEEE Transactions on, vol. 43,
pp. 617–629, Dec 1994.

[31] D. Herman, J. Matthews, K. McAllister, J. Moffitt, and S. Sapin, “Servo Web
Browser Engine using Rust.”.

[32] “Gumbo-parser.” https://github.com/google/gumbo-parser.

[33] “Parse5.” https://www.npmjs.com/package/parse5.

[34] “The Validator.nu HTML Parser.” https://about.validator.nu/

htmlparser/. Accessed: 2015-05-04.

[35] “Newest ’jsoup’ Questions - Stack Overflow.” http://stackoverflow.com/

questions/tagged/jsoup, note = Accessed:2015-08-25.

[36] E. Baykan, M. Henzinger, S. F. Keller, S. De Castelberg, and M. Kinzler, “A
Comparison of Techniques for Sampling Web Pages,” Feb. 2009.

[37] “Common Crawl.” http://commoncrawl.org/. Accessed: 2015-08-17.

[38] S. Merity, “Crawling Strategy of newer Crawls.” https://groups.google.

com/d/msg/common-crawl/IGa7E680NUs/OQhYYzt9DAAJ.

https://wiki.whatwg.org/wiki/Parser_tests
https://wiki.whatwg.org/wiki/Parser_tests
https://github.com/google/gumbo-parser
https://www.npmjs.com/package/parse5
https://about.validator.nu/htmlparser/
https://about.validator.nu/htmlparser/
http://stackoverflow.com/questions/tagged/jsoup
http://stackoverflow.com/questions/tagged/jsoup
http://commoncrawl.org/
https://groups.google.com/d/msg/common-crawl/IGa7E680NUs/OQhYYzt9DAAJ
https://groups.google.com/d/msg/common-crawl/IGa7E680NUs/OQhYYzt9DAAJ

BIBLIOGRAPHY 91

[39] “Introduction to Amazon S3 - Amazon Simple Storage Service.” http:

//docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html.
Accessed:2015-08-21.

[40] “Announcing the Common Crawl Index! Common Crawl Blog.” http://blog.
commoncrawl.org/2015/04/announcing-the-common-crawl-index/.
Accessed:2015-08-17.

[41] I. Kreymer, “CDX Index Format.” https://github.com/ikreymer/pywb/

wiki/CDX-Index-Format. Accessed:2015-08-18.

[42] “Jsoup Issues.” https://github.com/jhy/jsoup/issues, note =
Accessed:2015-08-29.

http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html
http://blog.commoncrawl.org/2015/04/announcing-the-common-crawl-index/
http://blog.commoncrawl.org/2015/04/announcing-the-common-crawl-index/
https://github.com/ikreymer/pywb/wiki/CDX-Index-Format
https://github.com/ikreymer/pywb/wiki/CDX-Index-Format
https://github.com/jhy/jsoup/issues

Appendix A

Team activities

The Table A.1 shows the distribution of work among team members. My work effort is
that of the column with the name Jose. This table was done along with Carlos Anaya.

Please bear in mind that this is just an estimation calculated from a backlog and
notes, and that it only contemplates design and implementation of the software, ex-
cluding time spent for exams. Additionally, this is the work realised from March to
July. According to the plan, it was expected each member work half time in the period
from March to May, that is 30 days; and full time in thye period from June to July, that
is 40 days. In total each member should worked 70 days in the period from March
to July. As it can be seen, Xiao days is incomplete. The reason is that this person
stopped coming to meetings around mid-June.

Furthermore, the Table A.2 shows a log maintained daily with detailed description
of the tasks done by myself.

92

93

Component Activity Estimated
effort (days)

Team members
Carlos Jose Xiao

Parser Implementation Preprocessing 1 100 0 0
Tokenizer 15 33 33 33
Tree constructor 15 25 25 50
Algorithms 10 50 50 0
Test harness 4 25 75 0
Testing 25 40 40 20
DOM implementation 7 100 0 0

Adapters Jsoup 2 100 0 0
Anglesharp 2 100 0 0
Html5lib 2 0 50 50
parse5 2 0 100 0
validator.nu 2 0 100 0

Comparator Report generator 7 25 75 0
Algorithm 5 0 100 0
Output processing 5 100 0 0

Web Application Comparator UI 5 100 0 0
Tracer UI 5 100 0 0
Input test 5 100 0 0

Common crawl Design and implementation 30 0 100 0
Tracer Design and implementation 15 100 0 0

Total 164 72,45 71,95 18,45

Table A.1: Distribution of effort

94 APPENDIX A. TEAM ACTIVITIES

Activity
Start
Date

Finish
date

Days Details

Adding of parse5
Javascript HTML5
parser to the Com-
parator

5/jun/15 8/jun/15 4

parse5 is a javascript HTML5 parser implementation
that claims to be WHATWG spec complaint. This
activity consisted in setup the parser and develop the
adapter to serialise into the html5lib format

Development of
parser’s output com-
parison

9/jun/15 11/jun/15 3

This Java component was made to compare the out-
puts of the different parsers, and then apply a plurality
voting algorithm to decide which output were correct
or not

Fix HTML5Lib
adapter

12/jun/15 12/jun/15 1 It was not serialising correctly.

Common crawl 15/jun/15 24/jun/15 10

Read of a remote file Connection http. Read of a local
file. Process of a gzip file and a stream. Retrieve of a
single record with a particular offset. Change to call
parsers from the same java process. Able to process
a common crawl archive, some problems still though
(argument size limit)

Common crawl and
report

25/jun/15 26/jun/15 2

Able to process a particular number of records of a
common crawl file and show the results in the web
interface. Fixed a problem with argument size limit
creating a tmp file. Parsers take too much time with
big inputs, specifically jsoup (245kb). A timeout was
implemented.

Fixing crawling
process when Jsoup
hangs

29/jun/15 29/jun/15 1
Jsoup was hanging the overall process and it was not
being stopped correctly. Now, after the timeout all
parsers executions are destroyed

Fixing bugs with
crawling

30/jun/15 01/jul/15 2
Run a local file because a http error. However is still
having an error when the report.xml is too big and
exceed the memory limit

Refactor of Report
and addition of
partitioned report

2/jul/15 3/jul/15 2

Partitioned report. The report now generates several
parts so a main report contains the totals of all parts.
This allows to process beyond the limit of a java DOM
size

Fixed plurality algo-
rithm

6/jul/15 6/jul/15 1

Fix plurality algorithm because it was changed. Fix
error when comparing, if a parser does not parse cor-
rectly or have a timeout thus produce an error instead
of a tree

Change HTML
crawler to run only
one parser and write
the output to FS

7/jul/15 8/jul/15 2

Major update to run the crawler with an particular
parser and common crawl file and write the output of
the parser to FS. Comparator is not called anymore,
instead it will run after several parsers have been run

Install and run the val-
idator.ns parser

9/jul/15 9/jul/15 1
This is a java parser but it needs a html5lib format
serializer. Is particularly different than the others be-
cause it parse in a stream way with SAX capabilities.

Fixing comparator,
initial version was not
working

10/jul/15 10/jul/15 1
Initial run of the updated crawler process and com-
parator , though having problems with the file system
(coded for windows and not working in linux)

Testing with more
than 2500 html
documents...

13/jul/15 13/jul/15 1
Run 3645 tests. We have performance and storage
issues

95

Reading about web
sampling

14/jul/15 14/jul/15 1
Principled Sampling for Anomaly Detection and
A COMPARISON OF TECHNIQUES FOR SAM-
PLING WEB PAGES

Researching how to
get random records
form Common crawl

15/jul/15 17/jul/15 3
Two frameworks for processing ZipNum Sharded
CDX Cluster, which is the format of the CC index.
Using the java webarchive-commons.

Design and code a ap-
plication to get ran-
dom sampling from
common crawl

20/jul/15 24/jul/15 5

An application was developed to get random records
form a CC index from Amazon S3. This require a
Amazon S3 account. This records have the informa-
tion to retrieve the HTML from the common crawl
corpus.

Create a sample 27/jul/15 27/jul/15 1

2000 indexes were retrieved from the last
collection(CC-MAIN-2015-22) of the CC index
randomly. Then with these indexes, the records
documents were retrieved from the Common crawl
corpus and finally a compressed WARC was created
with the sample. All this was executed on a Amazon
EC2 instance to minimize transferred data

Run the comparator
tool with the sample

28/jul/15 28/jul/15 1
The sample was parsed by the parsers. 1982 HTML
documents of 2000 were parsed due to 18 records
were not valid HTML responses

Finish the validator.nu
adapter

29/jul/15 29/jul/15 1

It was necessary to use the SAX instead of a DOM
because the DOM implementation has problems with
XML restrictions i.e. invalid characters in attributes
names. I ran the html5lib tests and two tests fail.

Run the comparator
tool with the sample
and fix adapters bugs.

30/jul/15 31/jul/15 2
Several bugs were fixed in the adapters in order to
have the correct output. i.e. Attributes order, extra
lines, wrong encoding

Write dissertation and
do experiments and fi-
nal fixes

03/aug/15 11/sep/15 20
Mainly write dissertation. Run experiments in the test
framework and do last changes and fixes.

Table A.2: Log with tasks done by myself. Period from June to September.

Appendix B

HTML5 Parser Architecture

Figure B.1: Parser architecture part 1

96

97

Figure B.2: Parser architecture part 2

Appendix C

HTML5 Parser Survey

The following pages shows a Table C.1 with the repository and references consulted in
this parser survey. A second Table C.2 shows key data related to each HTML5 parser.

98

99

Pa
rs

er
na

m
e

So
ur

ce
R

ep
os

ito
ry

U
R

L

A
ng

le
Sh

ar
p

ht
tp

s:
//g

ith
ub

.c
om

/F
lo

ri
an

R
ap

pl
/A

ng
le

Sh
ar

p
ht

tp
://

an
gl

es
ha

rp
.g

ith
ub

.io
/

ht
tp

://
w

w
w

.c
od

ep
ro

je
ct

.c
om

/A
rt

ic
le

s/
60

90
53

/A
ng

le
Sh

ar
p

ht
tp

s:
//g

ith
ub

.c
om

/F
lo

ri
an

R
ap

pl
/A

ng
le

Sh
ar

p/
w

ik
i

pa
rs

e5
ht

tp
s:

//g
ith

ub
.c

om
/in

ik
ul

in
/p

ar
se

5
ht

tp
s:

//w
w

w
.n

pm
js

.c
om

/p
ac

ka
ge

/p
ar

se
5

H
tm

l5
lib

ht
tp

s:
//g

ith
ub

.c
om

/h
tm

l5
lib

/h
tm

l5
lib

-p
yt

ho
n

ht
tp

s:
//p

yp
i.p

yt
ho

n.
or

g/
py

pi
/h

tm
l5

lib
js

ou
p

ht
tp

s:
//g

ith
ub

.c
om

/jh
y/

js
ou

p/
ht

tp
://

js
ou

p.
or

g/
va

lid
at

or
.n

u
ht

tp
s:

//h
g.

m
oz

ill
a.

or
g/

pr
oj

ec
ts

/h
tm

lp
ar

se
r/

ht
tp

s:
//a

bo
ut

.v
al

id
at

or
.n

u/
ht

m
lp

ar
se

r/
cl

-h
tm

l5
-p

ar
se

r
ht

tp
s:

//g
ith

ub
.c

om
/c

op
yl

ef
t/c

l-
ht

m
l5

-p
ar

se
r

ht
tp

s:
//g

ith
ub

.c
om

/c
op

yl
ef

t/c
l-

ht
m

l5
-p

ar
se

r
ht

m
l5

ev
er

ht
tp

s:
//g

ith
ub

.c
om

/s
er

vo
/h

tm
l5

ev
er

ht
tp

s:
//g

ith
ub

.c
om

/s
er

vo
/h

tm
l5

ev
er

ta
gs

ou
p

ht
tp

s:
//g

ith
ub

.c
om

/n
dm

itc
he

ll/
ta

gs
ou

p.
gi

t
ht

tp
://

co
m

m
un

ity
.h

as
ke

ll.
or

g/
nd

m
/ta

gs
ou

p/
ht

m
l

ht
tp

s:
//g

ith
ub

.c
om

/d
ar

t-
la

ng
/h

tm
l

ht
tp

s:
//p

ub
.d

ar
tla

ng
.o

rg
/p

ac
ka

ge
s/

ht
m

l
gu

m
bo

ht
tp

s:
//g

ith
ub

.c
om

/g
oo

gl
e/

gu
m

bo
-p

ar
se

r
ht

tp
s:

//g
ith

ub
.c

om
/g

oo
gl

e/
gu

m
bo

-p
ar

se
r

H
ub

bu
b

ht
tp

://
so

ur
ce

.n
et

su
rf

-b
ro

w
se

r.o
rg

/li
bh

ub
bu

b.
gi

t/
ht

tp
://

w
w

w
.n

et
su

rf
-b

ro
w

se
r.o

rg
/p

ro
je

ct
s/

hu
bb

ub
/

ht
m

l5
-p

hp
ht

tp
s:

//g
ith

ub
.c

om
/M

as
te

rm
in

ds
/h

tm
l5

-p
hp

ht
tp

://
m

as
te

rm
in

ds
.g

ith
ub

.io
/h

tm
l5

-p
hp

/
ht

tp
s:

//p
ac

ka
gi

st
.o

rg
/p

ac
ka

ge
s/

m
as

te
rm

in
ds

/h
tm

l5
ht

m
l

ht
tp

s:
//g

ith
ub

.c
om

/g
ol

an
g/

ne
t/t

re
e/

m
as

te
r/

ht
m

l
ht

tp
s:

//g
od

oc
.o

rg
/g

ol
an

g.
or

g/
x/

ne
t/h

tm
l#

pk
g-

su
bd

ir
ec

to
ri

es

H
TM

L:
:H

TM
L5

::
Pa

rs
er

ht
tp

s:
//b

itb
uc

ke
t.o

rg
/to

by
in

k/
p5

-h
tm

l-
ht

m
l5

-p
ar

se
r

ht
tp

://
se

ar
ch

.c
pa

n.
or

g/
to

by
in

k/
H

T
M

L
-H

T
M

L
5-

Pa
rs

er
-0

.3
01

/li
b/

H
T

M
L

/H
T

M
L

5/
Pa

rs
er

.p
m

Ta
bl

e
C

.1
:H

T
M

L
5

so
ur

ce
s

an
d

re
fe

re
nc

es

100 APPENDIX C. HTML5 PARSER SURVEY

Parser
nam

e
L

anguage
H

tm
l5lib

tests 1
Testharness

Specification
C

om
pliance

B
row

ser
engine

A
uthor

L
icence

C
urrent

binary
version

L
astU

pdate

A
ngleSharp

C
#

Y
es

H
ave

theirow
n

testsuite
W

3C
9

N
o

Florian
R

appl
M

IT
L

icense 3
0.8.9

29/07/2015
parse5

javascript
Y

es
H

tm
l5lib

testsuite
W

H
A

T
W

G
N

o
Ivan

N
ikulin

M
IT

L
icense

1.5.0
24/06/2015

H
tm

l5lib
python

Y
es

H
tm

l5lib
testsuite

W
H

A
T

W
G

N
o

Jam
es

G
raham

,
G

eoffrey
Sned-

don,
L

ukasz
L

anga

M
IT

L
icense

1.0b7
07/07/2015

jsoup
Java

N
o

H
ave

theirow
n

testsuite
W

H
A

T
W

G
N

o
Jonathan

H
edley,

M
ozilla

M
IT

L
icense

1.8.3
02/08/2015

validator.nu
Java

Y
es 2

H
tm

l5lib
testsuite

W
H

A
T

W
G

C
++

port
in

G
ecko

H
enriSivonen

M
IT

L
icense

1.4
29/05/2015

4

cl-htm
l5-parser 5

C
om

m
on

L
isp

Y
es

H
tm

l5lib
testsuite

W
H

A
T

W
G

N
o

T
hom

as
B

akke-
tun,C

opyleft

G
N

U
L

esser
G

eneral
Public

L
icense

v3.0
U

nknow
n

17/07/2014

htm
l5ever 6

R
ust

Y
es 7

H
tm

l5lib
testsuite

W
H

A
T

W
G

Servo

A
dam

R
oben,

A
kos

K
iss,W

ojciech
Z

arazek-
W

iniew
ski

A
pache

L
i-

cense,V
ersion

2.0
N

otreleased
31/08/2015

8

tagsoup
H

askell
N

o
H

ave
theirow

n
testsuite

N
o

specified
N

o
N

eilM
itchell

B
SD

3
0.13.3

01/10/2014
htm

l
5

D
art

Y
es

H
tm

l5lib
testsuite

W
H

A
T

W
G

N
o

D
artteam

M
IT

L
icense

0.12.1+2
06/07/2015

gum
bo

C
99

Y
es

H
tm

l5lib
testsuite

W
H

A
T

W
G

N
o

G
oogle

A
pache

L
icense,

V
ersion

2.0
0.10.1

30/04/2015

H
ubbub

C
Y

es
H

tm
l5lib

testsuite
W

H
A

T
W

G

Probably
in

fu-
ture,
N

etSurf
engine

N
etSurf

M
IT

L
icense

0.3.1
08/03/2015

htm
l5-php

Php
N

o
H

ave
theirow

n
testsuite

W
3C

N
o

M
asterm

inds
M

IT
L

icense
2.1.2

07/06/2015
htm

l
G

o
Y

es
H

tm
l5lib

testsuite
W

H
A

T
W

G
N

o
G

o
A

uthors
B

SD
U

nknow
n

28/07/2015

H
T

M
L

::H
T

M
L

5::Parser
perl

Y
es

H
tm

l5lib
testsuite

N
o

specified
N

o
Toby

Inkster
G

N
U

G
eneral

Public
L

icense
0.301

08/07/2013

1
T

he
value

”N
o”

m
eans

thatthere
is

no
inform

ation
provided

nortests
included

in
the

source
code

thatindicates
the

use
ofH

T
M

L
5lib

testsuite
2

A
ssum

ed
from

the
acknow

ledgem
ents

section
oftheirpage

3
Seem

s
to

be
M

IT
w

ith
som

e
m

odifications
4

T
his

is
the

date
ofthe

lastupdate
ofthe

source
code,since

the
binay

file
have

notupdated.T
he

binary
file

lastupdate
in

m
aven

is
05/06/2012.

5
H

tm
l5lib

port
6

C
urrently

underdevelopm
ent

7
C

urrently
passes

alltokenizertests
and

m
ostoftree

builder.
8

T
his

is
the

date
ofthe

lastupdate
ofthe

source
code,since

this
parseris

underdevelopm
ent

9
W

3C
com

pliantw
ith

som
e

W
H

A
T

W
G

extensions
https://github.com

/A
ngleSharp/A

ngleSharp

Table
C

.2:H
T

M
L

5
parsersurvey

Appendix D

Files used from the HTML5Lib test
suite

tests1.dat tests14.dat tests26.dat main-element.dat

tests2.dat tests15.dat adoption01.dat
pending-spec-changes-
plain-text-unsafe.dat

tests3.dat tests16.dat adoption02.dat
pending-spec-
changes.dat

tests4.dat tests17.dat comments01.dat plain-text-unsafe.dat
tests5.dat tests18.dat doctype01.dat ruby.dat
tests6.dat tests19.dat domjs-unsafe.dat scriptdata01.dat
tests7.dat tests20.dat entities01.dat tables01.dat
tests8.dat tests21.dat entities02.dat template.dat

tests9.dat tests22.dat
foreign-
fragment.dat

tests innerHTML 1.dat

tests10.dat tests23.dat
html5test-
com.dat

tricky01.dat

tests11.dat tests24.dat inbody01.dat webkit01.dat
tests12.dat tests25.dat isindex.dat webkit02.dat

101

Appendix E

Possible HTML5Lib test suite missing
tests

Totally, the number of possible missing tests found were 5. Additionally to the three
shown here, the bugs F.3 and G.2 are also considered as missing tests.

E.1 U+FEFF BYTE ORDER MARK character

This test case tests if the leading U+FEFF BYTE ORDER MARK character is removed.

Input

<!DOCTYPE html PUBLIC ”− / /W3C / / DTD XHTML 1 . 0 T r a n s i t i o n a l / / EN” ” h t t p : / / www. w3 . org /
TR / xhtml1 /DTD/ xhtml1− t r a n s i t i o n a l . d t d”>

Listing E.1: Input test case

Expected output

| <!DOCTYPE html ”− / /W3C / / DTD XHTML 1 . 0 T r a n s i t i o n a l / / EN” ” h t t p : / / www. w3 . org / TR /
xhtml1 /DTD/ xhtml1− t r a n s i t i o n a l . d t d”>

| <html>
| <head>
| <body>

Listing E.2: Correct output

102

E.2. LINE FEED NEXT TO TEXTAREA 103

Wrong Output

| <html>
| <head>
| <body>
| ” ”

Listing E.3: Wrong Output

E.2 Line feed next to textarea

This test case involves Foster parenting when a textarea is after a table. However,
HTML5Lib MScParser failed to ignore a Line Feed character that is next to the textarea.
Is interesting that they do not fail if table is not present. In the following coding snip-
pets, the character cannot be seen. However is the first character in the input.

Input

<t a b l e ><t e x t a r e a >
t e s t

Listing E.4: Input test case

Expected output

| <html>
| <head>
| <body>
| < t e x t a r e a >
| ” t e s t ”
| <t a b l e >

Listing E.5: Correct output

Wrong Output

| <html>
| <head>
| <body>
| < t e x t a r e a >
| ”
t e s t ”
| <t a b l e >

104 APPENDIX E. POSSIBLE HTML5LIB TEST SUITE MISSING TESTS

Listing E.6: Wrong Output

E.3 Line feed next to pre

This case is exactly the same as the Line feed next to textarea start tag, but with the
pre start tag.

Input

<t a b l e ><pre>
t e s t

Listing E.7: Input test case

Expected output

| <html>
| <head>
| <body>
| <pre>
| ” t e s t ”
| <t a b l e >

Listing E.8: Correct output

Wrong Output

| <html>
| <head>
| <body>
| <pre>
| ”
t e s t ”
| <t a b l e >

Listing E.9: Wrong Output

Appendix F

ValidatorNU bugs

F.1 Character reference bug

Fail to return a U+FFFD REPLACEMENT CHARACTER (0xEF 0xBF 0xBD (efbfbd)
in UTF-8). Bug in section Tokenizing character references.

Input

FOO�

Expected output

00000000 7 c 20 3 c 68 74 6d 6 c 3 e 0 a 7 c 20 20 20 3 c 68 65 | | <html > . | <he |
00000010 61 64 3 e 0 a 7 c 20 20 20 3 c 62 6 f 64 79 3 e 0 a 7 c | ad > . | <body > . | |
00000020 20 20 20 20 20 22 46 4 f 4 f e f b f bd 22 0 a | ”FOO . . . ” . |
0000002 e

Listing F.1: Plurality and correct output. Correct hexadecimal values

ValidatorNU output

00000000 7 c 20 3 c 68 74 6d 6 c 3 e 0 a 7 c 20 20 20 3 c 68 65 | | <html > . | <he |
00000010 61 64 3 e 0 a 7 c 20 20 20 3 c 62 6 f 64 79 3 e 0 a 7 c | ad > . | <body > . | |
00000020 20 20 20 20 20 22 46 4 f 4 f e1 a7 87 22 | ”FOO . . . ” |
0000002 d

Listing F.2: ValidatorNU Output. Incorrect hexadecimal values

105

106 APPENDIX F. VALIDATORNU BUGS

(a) Firefox output

(b) Chrome output

Figure F.1: Character reference bug

F.2 Menuitem bug

Fail to handle menuitem element according to WHATWG specification.

Input

<!DOCTYPE html><body><menuitem>A

Expected output

| <!DOCTYPE html>
| <html>
| <head>
| <body>
| <menuitem>

| ”A”

Listing F.3: Correct output according to WHATWG specification

ValidatorNU, Firefox and Chrome output according to W3C specification

F.3. EXTRA CHARACTER AFTER MALFORMED COMMENT BUG 107

| <!DOCTYPE html>
| <html>
| <head>
| <body>
| <menuitem>

| ”A”

Listing F.4: ValidatorNU Output.

F.3 Extra character after malformed comment bug

It adds an extra character & after a malformed comment containing a character refer-
ence. This bug was found in the Common crawl sample.

Input

<!— >

Expected output

| <!−− — −−>
| <html>
| <head>
| <body>

Listing F.5: Correct output according to majority.

ValidatorNU

| <!−− — −−>
| <html>
| <head>
| <body>
| ”&”

Listing F.6: ValidatorNU Output.

Appendix G

Parse 5 bugs

G.1 Button tag bug

This test is covered by HTML5Lib test suite, however, parse5 stopped working with
this scenario.

/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e a d a p t e r s / d e f a u l t . j s : 0
(f u n c t i o n (e x p o r t s , r e q u i r e , module , f i l e n a m e , d i r n a m e) { ’ use s t r i c t ’ ;

RangeEr ro r : Maximum c a l l s t a c k s i z e exceeded
a t O b j e c t . e x p o r t s . getTagName (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e a d a p t e r s /

d e f a u l t . j s)
a t P a r s e r . i s S p e c i a l E l e m e n t (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e c o n s t r u c t i o n

/ p a r s e r . j s : 8 7 1 : 3 1)
a t gener icEndTagInBody (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e c o n s t r u c t i o n /

p a r s e r . j s : 1 8 9 9 : 1 5)
a t O b j e c t . endTagInBody [as END TAG TOKEN] (/ home / j o s e / node modules / p a r s e 5 / l i b /

t r e e c o n s t r u c t i o n / p a r s e r . j s : 2 0 0 2 : 1 7)
a t P a r s e r . p r o c e s s T o k e n (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e c o n s t r u c t i o n /

p a r s e r . j s : 6 1 9 : 3 8)
a t P a r s e r . p roces sFakeEndTag (/ home / j o s e / node modules / p a r s e 5 / l i b /

t r e e c o n s t r u c t i o n / p a r s e r . j s : 6 6 3 : 1 0)
a t b u t t o n S t a r t T a g I n B o d y (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e c o n s t r u c t i o n /

p a r s e r . j s : 1 3 5 1 : 1 1)
a t b u t t o n S t a r t T a g I n B o d y (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e c o n s t r u c t i o n /

p a r s e r . j s : 1 3 5 2 : 9)
a t b u t t o n S t a r t T a g I n B o d y (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e c o n s t r u c t i o n /

p a r s e r . j s : 1 3 5 2 : 9)
a t b u t t o n S t a r t T a g I n B o d y (/ home / j o s e / node modules / p a r s e 5 / l i b / t r e e c o n s t r u c t i o n /

p a r s e r . j s : 1 3 5 2 : 9)

Listing G.1: Parse 5 error when processing <button><p><button>

108

G.2. TABLE AND CARRIAGE RETURN(CR) CHARACTERS REFERENCES 109

G.2 Table and Carriage Return(CR) characters refer-
ences

This is a strange case found in the Common Crawl sample which parse5 moves Car-
riage Return and Line feed characters before a table element, instead of leaving them
there. Note that the input contains character references for the Carriage Return(CR).
Actually, Carriage Return(CR) characters are sent to the Tree Constructor, even if
normal Carriage Return(CR) characters were removed in the pre processing stage.
Thus the tree constructor receives a Carriage Return(CR) character followed by a Line
feed(LF).

Input

<t a b l e ><td></td >

<t r><td></td >

Listing G.2: Input test case

Expected output

| <html>
| <head>
| <body>
| <t a b l e >
| <tbody>
| <t r>
| <td>
| ”

”
| <t r>
| <td>
| ”

”

Listing G.3: Correct output according to majority.

ValidatorNU

110 APPENDIX G. PARSE 5 BUGS

| <html>
| <head>
| <body>
| ”

”
| <t a b l e >
| <tbody>
| <t r>
| <td>
| <t r>
| <td>

Listing G.4: Parse5 Output.

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Dedication
	Glossary
	Introduction
	Aim
	Objectives
	Scope
	Team organization
	Dissertation outline
	Terminology

	Background and theory
	Introduction to HTML5
	HTML Historical background
	HTML versus the draconian error handling

	HTML5 Parsing Algorithm
	Testing methods
	Functional testing
	Oracle testing

	Summary

	HTML5 parser implementation
	Design
	Overview
	State design pattern
	Tokenizer
	Tree constructor
	Error handling

	Building
	Testing
	Tokenizer
	Tree builder

	Summary

	Test Framework
	Design
	Architecture
	Adapters
	Comparator and plurality agreement

	Building
	Parser adapters implementations
	Preparing the input
	Comparator

	Other framework features
	Web Interface
	Tracer

	Summary

	HTML5 parsers survey
	Summary

	Common crawl data set as source of test cases
	Common crawl introduction
	Common crawl corpus description
	Common crawl Index
	Random sample algorithm
	Random Shard Index File
	Random Shard
	Random CDX Index records

	Sampling method
	Summary

	Test framework execution
	Common crawl sample from May 2015
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	HTML5Lib test suite
	Experiment 5

	Common crawl sample from July 2015
	Experiment 6

	Summary

	Results and discussion
	MScParser evaluation
	Differences between W3C and WHATWG specifications
	Level of agreement across parsers
	Disagreements analysis
	HTML5Lib Missing tests
	Specification bugs
	Summary

	Conclusions
	Limitations
	Future work

	Bibliography
	Team activities
	HTML5 Parser Architecture
	HTML5 Parser Survey
	Files used from the HTML5Lib test suite
	Possible HTML5Lib test suite missing tests
	U+FEFF BYTE ORDER MARK character
	Line feed next to textarea
	Line feed next to pre

	ValidatorNU bugs
	Character reference bug
	Menuitem bug
	Extra character after malformed comment bug

	Parse 5 bugs
	Button tag bug
	Table and Carriage Return(CR) characters references

